A.G & S.G. SIDDHARTHA DEGREE

COLLEGE OF ARTS & SCIENCE Vuyyuru-521165

NAAC reaccredited at "A" level Autonomous -ISO 9001 – 2015 Certified

DEPARTMENT OF CHEMISTRY
(U.G) EVEN SEM BOS (2&4)
Academic year 2024-2025

Date: 10-02-2025

A.G. & S.G. Siddhartha Degree College of Arts & Science, Autonomous, Vuyyuru Minutes of the Meeting of Board of Studies in Chemistry held at 11.30 A.M on 10-02-2025 in the Department of Chemistry through online mode.

Dr .G.Gíríprasad Presídír	ng
Members Present:	
1)	Chairman., Head, Dept. of Chemistry,
(Dr. G.Giri Prasad)	A.G. & S.G.S. Degree College, Vuyyuru.
2)	University Nominee, Assistant Professor,
(Dr. A.Rama Rao)	Dept. of Chemistry, P.B Siddhartha College
	of Arts and Sciences., Vijayawada
3)	Academic Council Nominee., GITAM School of
(Proff. Venkata Nadh Ratnakaram)	Science, GITAM Deemed to be University
	Bengaluru Campus, Karnataka
4)	Academic Council Nominee., Lecturer in
(Dr. K. V.S. Koteswara Rao)	Chemistry, SRK., GDC, Vinukonda,
5)	Industrialist., Manager, Q.A, Biophore india
(Dr. G Raja)	Pharmaceuticals pvt ltd Hyd.
6)	Student Nominee., Lecturer in Chemistry,
(Smt. M. Sowjanya)	ANR College Gudivada.
7)	Member., Lecturer in Chemistry,
(Smt. M.V.Santhi)	A.G. & S.G.S.Degree College, Vuyyuru
8)	Member Lecturer in Chemistry,
(Sri. P.Suresh)	A.G. & S.G.S.Degree College, Vuyyuru.
9)	Member Lecturer in Chemistry,
(MS. M.Santhi)	A.G.& S.G.S.Degree College, Vuyyuru.
10)	Member., Rtd. Lecturer in Chemistry,
(Sri K.Ramesh)	A.G.& S.G.S.Degree College, Vuyyuru.

Agenda for B.O.S Meeting

- To recommend the syllabus and model paper for II semester of I Degree B.Sc., Chemistry Major & Minor for the Academic year 2024-2025.
- To recommend the syllabus and model papers for IV semester of II Degree B.Sc., Chemistry Major & Minor for the Academic year 2024-2025.
- 3. To recommend the Value Added Course for IV semester of II Degree B.Sc., Chemistry Major students for the Academic year 2024-2025.
- To recommend the Guidelines to be followed by the question paper setters in Chemistry for II, IV
 Semester end exams.
- 5. To recommend the teaching and evaluation methods to be followed under Autonomous status.
- 6. Any suggestions regarding certificate course, seminars, workshops, Guest lecture to be organized.
- 7. Recommend the panel of paper setters and Examiners to the controller of Examinations of
- 8. Any other matter.

Chairman

RESOLUTIONS

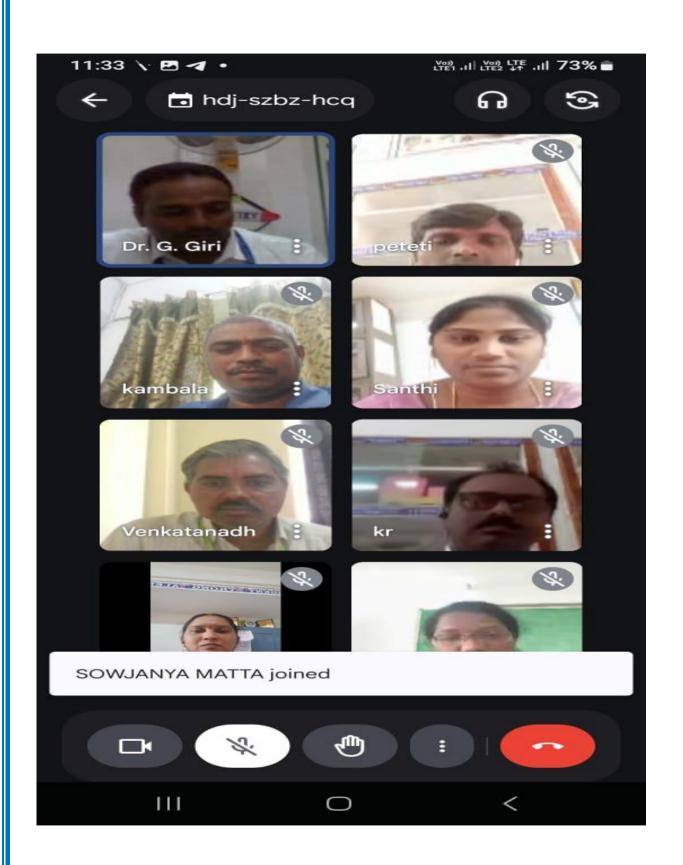
- 1. It is resolved to follow the syllabus of APSCHE (theory and practical) for II semesters of I B.Sc. Chemistry Major & Minor for the Academic year 2024--2025.
 - Major Chemistry Title: 1. GENERAL AND INORGANIC CHEMISTRY
 Practical Paper: Qualitative inorganic analysis (Minimum of Six simple salts should be analyzed)
 - Major Chemistry Title :2. INORGANIC CHEMISTRY- I Practical Paper : Preparation of Inorganic compounds:
 - Minor Chemistry Title: GENERAL AND INORGANIC CHEMISTRY
 - **Practical Paper :** Qualitative inorganic analysis (Minimum of Six simple salts should be analyzed)
 - Two papers (Practical & Theory)Should be Allotted for Chemistry Major Students
 - One paper (Practical & Theory) Should be Allotted for Chemistry Minor Students
- 2. It is resolved to follow the **syllabus of APSCHE** (theory and practical) for IV semesters of II B.Sc Chemistry Major & Minor for the Academic year 2024--2025.
 - Major Chemistry title 1 : Physical Chemistry-II (States of matter ,Phase rule & Surface Chemistry)
 - Practical paper: Physical Chemistry-II Practical
 - Major Chemistry title 2 : General and Physical Chemistry
 - Practical paper: Physical Chemistry-Volumetric Analysis
 - Major Chemistry title 3: Nitrogen Containing Organic Compounds & Spectroscopy
 - Practical paper : Organic Preparations and IR Spectral Analysis
 - Minor Chemistry title 1 : Physical Chemistry-II (States of matter ,Phase rule & Surface Chemistry)
 - Practical paper : Physical Chemistry-II Practical
 - Minor Chemistry title 2 : General and Physical Chemistry
 - Practical paper : Physical Chemistry-Volumetric Analysis
- 3. It is resolved to follow the Value added course for the Academic year 2024—2025. For second majo chemistry students
 - Topic: Water Analysis
- 4. It is resolved to follow the **guidelines** to be followed by the question paper setters of Chemistry for II, IV semesters of Degree B.Sc. Major & Minor students for the Academic Year 2024-2025.
- 5. It is resolved to continue the following teaching and evolution methods for Academic year 2024-25.

Teaching Methods:

Besides the conventional methods of teaching, we use modern technology i.e. using of LCD projector to display on U boards etc, for better understanding of concepts.

Evaluation of a student is done by the following procedure:

Internal Assessment Examinations:


- Out of maximum 100 marks in each paper for I B.Sc, 30 marks shall be allocated for internal assessment. Out of these 30 marks, 20 marks are allocated for announced tests (i.e.IA-1 & IA-2).
- Out of maximum 100 marks in each paper for II B.Sc, 30 marks shall be allocated for internal assessment. Out of these 30 marks 20 marks are allocated for announced tests (i.e.IA-1 & IA-2).
- Two announced tests will be conducted and average of these two tests shall be deemed as the marks obtained by the student, 5 marks are allocated on the basis of candidate's percentage of attendance and remaining 5 marks are allocated for the innovative component like assignment/quiz/seminars for I,II, B.Sc.

- Two announced tests will be conducted and average of these two tests shall be deemed as the marks obtained by the student. 5 marks are allocated for the innovative component like assignment/quiz/seminars for III B.Sc. &. 5 marks are allocated for the Activity.
- There is no pass minimum for internal assessment for I, II B.Sc.

Semester – End Examination:

- ➤ The maximum marks for II, IV,B.Sc Semester End examination shall be 70/70 marks duration of the examination shall be 3 hours. Even though the candidate is absent for two IA exams /obtain Zero marks the external marks are considered (if the candidate gets 40/70 and the result shall be declared as "PASS".
- Semester End examinations shall be conducted in theory papers at the end of every semester, while in practical papers, these examinations are conducted at the end of II,IV semesters for I, II B.Sc for 50 marks.
- **6.** Discussed and recommended for organizing certificate course, seminars, Guest lecturers, workshops to upgrade the knowledge of students, for the approval of the academic council.
- 7. Discussed and empowered the Head of the department of Chemistry to suggest the panel of paper setters and examiners to the controller of examinations
- **8.** NIL.

Chairman

A.G & S.G. SIDDHARTHA DEGREE COLLEGE OF ARTS & SCIENCE

Vuyyuru-521165

NAAC reaccredited at "A" level

Autonomous -ISO 9001 – 2015 Certified

Title of the Paper: GENERAL AND INORGANIC CHEMISTRY

Semester: II

Course Code	23CHMAL121	Course Delivery Method	Class Room / Blended
			Mode
Credits	3	CIA Marks	30
No. of Lecture Hours /	3	Semester End Exam Marks	70
Week			
Total Number of Lecture	60	Total Marks	100
Hours			
Year of Introduction:	Year of Offering:	Year of Revision:	Percentage of Revision:
2023-24	2024-25	2024-25	100

Course Outcomes:

At the end of the course the student will be able to-

- 1. Understand the structure of atom and the arrangement of elements in the periodic table.
- 2. Understand the nature and properties of ionic compounds.
- 3. Identify the structure of a given inorganic compound.
- 4. Explain the existence of special types of compounds through weak chemical forces.
- 5. Define acids and bases and predict the nature of salts.

Syllabus

Course Details

Unit	Learning Units	Lecture Hours		
	GENERAL AND INORGANIC CHEMISTRY			
I	Atomic Structure and Periodic table: Electronic configuration: Bohr theory, duel nature of electrons, Heisenberg uncertainty principle, the Schrodinger equation, significance of wave functions, normalization of wave function, radial and angular wave functions, Pauli's exclusion principle, Hund's rule, sequence of energy levels (Aufbau principle). Periodicity: periodic law and arrangement of elements in the periodic table, IUPAC nomenclature and group number, horizontal, vertical, and diagonal relationships in the periodic table. 1.3 General properties of atoms: size of atoms and ions-atomic radii, ionic radii, covalent radii; trend in ionic radii, ionization potential, electron affinity; electronegativity - Pauling, Mulliken-Jaffe, Allred-Rochow definitions; oxidation states and variable valency; isoelectronic relationship; inert-pair effect.	9h		
п	Ionic bond : Properties of ionic compounds, factors favouring the formation of ionic compounds- ionization potential, electron affinity, and electronegativity. Lattice energy: definition, factors affecting lattice energy, Born-Haber cycle-enthalpy of formation of ionic compound and stability. Stability of ionic compounds in terms of ΔH_f and U_O . Solubility and thermal stability of ionic compounds. Covalent character in ionic compounds-polarization and Fajan's rules; effects of polarization-solubility, melting points, and thermal stability of typical ionic compounds.	9h		
III	The Covalent Bond: Valance Bond theory-arrangement of electrons in molecules, hybridization of atomic orbitals and geometry of molecules-BeCl ₂ , BF ₃ , CH ₄ , PCl ₅ , SF ₆ – VSEPR model- effect of bonding and nonbonding electrons on the structure of molecules, effect of electronegativity, isoelectronic principle, illustration of structures by VESPR model-NH ₃ , H ₂ O, SF ₄ , <i>ICl</i> ⁻⁴ , <i>ICl</i> ⁻² , XeF ₄ , XeF ₆ . Molecular orbital theory -LCAO method, construction of M.O. diagrams for homo- nuclear and hetero-nuclear diatomic molecules (N ₂ , O ₂ , CO and NO).	9h		
IV	Metallic and Weak Bonds: The Metallic bond: metallic properties, free electron theory, Valence Bond Theory, band theory of metals. Explanation of conductors, semiconductors and insulators. Weak bonds: hydrogen bonding-intra- and intermolecular hydrogen bonding, influence on the physical properties of molecules, comparison of hydrogen bond strength and properties of hydrogen bonded N, O and F compounds; associated molecules-ethanol and acetic acid; Vanderwaals forces, ion dipole-dipole interactions.	9h		
V	Acids and Bases: Theories of acids and bases: Arrhenius theory, Bronsted-Lowry theory, Lewis theory, the solvent system, Nonaqueous solvents: classification- protonic and aprotic solvents, liquid ammonia as solvent-solutions of alkali and alkaline earth metals in ammonia. Types of chemical reactions: acid-base, oxidation-reduction, calculation of oxidation number. Definition of pH, pKa, pKb. Types of salts, Salt hydrolysis. Pearson's concept, HSAB principle & its importance, bonding in Hard-Hard and Soft-Soft combinations.	9h		

List of Reference Books: J. D. Lee, Concise Inorganic Chemistry, 5th ed., Blackwell Science, London, 1996. B. R. Puri, L. R. Sharma, K. C. Kalia, Principles of Inorganic Chemistry, Shoban Lal Nagin Chand and Co., 1996. D. F. Shriver and P. W. Atkins, Inorganic Chemistry, 3rd ed., W. H. Freemanand Co, London

A.G. & S.G.SIDDHARTHA DEGREE COLLEGE OF ARTS & SCIENCE (AUTONOMOUS), VUYYURU.

SEMESTER – II	PAPER-II	PAPER CODE: 23CHMAL121 ACADEMIC YEAR-2024-25
GENERAL AN	D INORGANIC CHEMISTRY	

Time: 3 hours Maximum Marks: 70

PART- A

Answer the following questions. Each carries FOUR marks

5 X 4 = 20 M

1. a) Describe Pauli's exclusion principle. L1-CO1

Or

b) Discuss inert-pair effect.

. L1-CO1

2. a)Tell factors favouring the formation of ionic compounds. LI -CO2

Or

- b) Describe Fajan's rules. L1-CO2
- 3. a)Explain about Valance Bond theory. L2-CO3

Or

- b)Summarize Hybridization and structure of BF3, CH4 by using VBT .L2-CO3
- 4. a)Interpret free electron theory –**L2-CO4**

Oı

- b) State ion dipole-dipole interactions.-L2-CO4
- 5. a) Explain Bronsted-Lowry theory and Lewis theory of acid and base. -L2-CO5

Or

b) Define pH, pKa, pKb with an example each. L2-CO5

PART- B

Answer ALL the questions. Each carries TEN marks

5 X 10 = 50 M

6 (a). Explain Bohr theory and duel nature of electrons. L2-CO1

Or

- (b). Explain ionic radii, covalent radii, ionization potential, electron affinity; electro negativity. L2-CO1
- 7 (a). Describe Born-Haber cycle. L1-CO2

Or

- (b). Define Lattice energy. Various factors affecting lattice energy. L1-CO2
- 8.(a). Explain VSEPR theory? Write vesper model structures of NH3, XeF4, XeF6 L1-CO3

Or

- (b). Construct the M.O. diagrams for N2 and CO. L1-CO3
- 9.(a). Explain band theory of metals. L2-CO4

Or

- (b). Explain hydrogen bonding-intra- and intermolecular hydrogen bonding. L2-CO4
- 10.(a). Difine Nonaqueous solvents and write the classification of Nonaqueous solvents. L2-CO5

Or

(b). Discuss Pearson's concept and explain HSAB principle & its importance. L2-CO5

A.G.&S.G.SIDDHARTHA DEGREE COLLEGE OF ARTS & SCIENCE (AUTONOMOUS), VUYYURU.

(Accredited at "A" Grade by NAAC, Bangalore) PRACTICAL SYLLABUS

GENERAL AND INORGANIC	PAPER CODE: 23CHMAP121
CHEMISTRY	ACADEMIC YEAR-2024-25

30 hrs (2h/w) Credits-1

Practical-I

Qualitative Analysis of Simple Salt

Qualitative inorganic analysis (Minimum of Six simple salts should be analyzed)

50 M

Course outcomes:

At the end of the course, the student will be able to;

- 1. Understand the basic concepts of qualitative analysis of inorganic simple salt.
- 2. Use glassware, equipment and chemicals and follow experimental procedures in the laboratory
- 3. Apply the concepts of common ion effect, solubility product and concepts related to qualitative analysis

Syllabus Analysis of SimpleSalt

50 M

Analysis of simple salt containing ONE anion and ONE cation from the following: Anions: Carbonate, Sulphate, Chloride, Bromide, Acetate, Nitrate, Borate, Phosphate.

Cations: Lead, Copper, Iron, Aluminium, Zinc, Nickel, Manganese, Calcium, Strontium, Barium, Magnesium and Ammonium.

Co-curricular activities and Assessment Methods

- 1. Continuous Evaluation: Monitoring the progress of student's learning.
- 2. Class Tests, Work sheets and Quizzes
- 3. Presentations, Projects and Assignments and Group Discussions: Enhances critical thinking skills and personality
- 4. SEMESTER-End Examination: critical indicator of student's learning and teaching methods adopted by teachers throughout the SEMESTER.

Reference books:

1. Vogel's Quanlitative Inorganic Analysis, Seventh edition, Pearson

SCHEME OF VALUATION

- 1. INTERNAL MARKS- Record-10M
- 2. EXTERNAL MAKS-40
- 3. Analysis of Simple salt -30M
- 4. Viva questions = 10 M

TOTAL = 50 M

A.G & S.G. SIDDHARTHA DEGREE COLLEGE OF ARTS & SCIENCE

Vuyyuru-521165

NAAC reaccredited at "A" level

Autonomous -ISO 9001 - 2015 Certified

Title of the Paper: INORGANIC CHEMISTRY- I

Semester: II

23CHMAL122	Course Delivery Method	Class Room / Blended
		Mode
3	CIA Marks	30
3	Semester End Exam Marks	70
60	Total Marks	100
Year of	Year of Revision:	Percentage of Revision:
Offering:	2024-25	100
2024-25		
	3 60 Year of Offering:	3 CIA Marks 3 Semester End Exam Marks 60 Total Marks Year of Year of Revision: Offering: 2024-25

Course Outcomes:

At the end of the course the student will be able to-

- 1. Understand the basic concepts of p-block elements.
- 2. Explain the concepts of d-block elements
- 3. Distinguish lanthanides and actinides.
- 4. Describe the importance of radioactivity.

Syllabus

Course Details

Unit	Learning Units	Lecture Hours		
	INORGANIC CHEMISTRY-I			
I	Chemistry of p-block elements Group13: Preparation & structure of Diborane, Borazine and (BN)x Group14:Preparation, classification and uses of silicones and Silanes. Group 15:Preparation & structure of Phosphonitrilic Chloride P3N3Cl6.			
II	Chemistry of p-block elements – II: Group 16: Classification of Oxides, structures of oxides and Oxoacids of Sulphur Group 17: Preparation and Structures of Interhalogen compounds. Pseudohalogens,	9h		
Ш	Chemistry of d-block elements: Characteristics of d-block elements with special reference to electronic configuration, variable valence, colour, magnetic properties, catalytic properties and ability to form complexes. Stability of various oxidation states of 3d series-Latimer diagrams.	9h		
IV	Chemistry of f-block elements: Chemistry of lanthanides - electronic configuration, oxidation states, lanthanide contraction, consequences of lanthanide contraction, colour, magnetic properties. Separation of lathanides by ion exchange method. Chemistry of actinides - electronic configuration, oxidation states, actinide contraction, comparison of lanthanides and actinides.	9h		
v	Radioactivity Definition, Isotopes, n/p ratio, binding energy, types of radioactivity, Soddy-Fajan's displacement law,Law of Radioactivity, Radioactive decay series, Nuclear Reactions-fission and fusion, Applications of radioactivity.	9h		

List of Reference Books:

- Basic Inorganic Chemistry by Cotton and Wilkinson
 Advance Inorganic chemistry vol-I by Satya Prakash
- 3. Inorganic chemistry by Puri and Sharma
- 4. Concise Inorganic Chemistry by J D Lee5. Nuclear Chemistry by Maheshwar Sharon

A.G. & S.G.SIDDHARTHA DEGREE COLLEGE OF ARTS & SCIENCE (AUTONOMOUS), VUYYURU.

SEMESTER – II PAPER-II PAPER CODE : 23CHMAL122
ACADEMIC YEAR-2024-25

INORGANIC CHEMISTRY-I

Time: 3 hours Maximum Marks: 70

PART-A

Answer the following questions. Each carries FOUR marks

5 X 4 = 20 M

1. a) Describe Preparation & structure of Borazine. L1-CO1

Or

b) Discuss Preparation & structure of Phosphonitrilic Chloride. L1-CO1

2. a)Tell structures of oxides and Oxo acids of Sulphur. LI -CO2

Or

- b) Describe Pseudo halogens. L1-CO2
- 3. a) Explain electronic configuration of d-block elements. **L2-CO3**

Or

- b) Explain ability to form complexes of d-block elements. **L2-CO3**
- 4. a) compare lanthanides and actinides -L2-CO4

Or

- b) State electronic configuration of lanthanides.-L2-CO4
- 5. a) Define Isotopes and n/p ratio. -L2-CO5

Or

b) Define Nuclear Reactions-fission and fusion. L2-CO5

PART-B

Answer ALL the questions. Each carries TEN marks

 $5 \times 10 = 50 M$

6 (a). Explain Preparation & structure of Diborane.L2-CO1

(or

- (b). Explain Preparation, classification and uses of silicones and Silanes. L2-CO1
- 7 (a). Discuss Classification of Oxides with an examples. **L1-CO2**

(or)

- (b). Describe Preparation and Structures of Interhalogen compounds. L1-CO2
- 8.(a). Explain variable valence, magnetic properties and catalytic properties of d-block elements. **L1-CO3**

(or)

- (b). Explain colour and Stability of various oxidation states of 3d series. L1-CO3
- 9.(a). Explain lanthanide contraction and what are the consequences of lanthanide contraction. **L2-CO4**

(or) (b). Explain Separation of lanthanides by ion exchange method. L2-CO4
10.(a).Discuss types of radioactivity and Soddy-Fajan's displacement law. L2-CO5 (or)
(b). Discuss Radioactive decay series and Applications of radioactivity. L2-CO5

A.G.&S.G.SIDDHARTHA DEGREE COLLEGE OF ARTS & SCIENCE (AUTONOMOUS), VUYYURU.

(Accredited at "A" Grade by NAAC, Bangalore) PRACTICAL SYLLABUS

INORGANIC CHEMISTRY-I	PAPER CODE: 23CHMAP122
	ACADEMIC YEAR-2024-25

30 hrs (2h/w) Credits-1

Course outcomes:

At the end of the course, the student will be able to:

- 1. CO1. Remember the basic concepts of inorganic preparations. PO6
- 2. CO2. Understand use of glassware, equipment and chemicals and follow experimental procedures in the laboratory. PO6
- 3. CO3. Apply the properties of various elements for the preparation of inorganic compounds. PO7

Syllabus:

Preparation of Inorganic compounds:

- 1. Crystallization of compounds and determination of melting point.
- 2. Preparation of Cuprous chloride.
- 3. Preparation of Potash Alum.
- 4. Preparation of Chrome Alum.
- 5. Preparation of Ferrous oxalate
- 6. Preparation of Ferrous ammonium sulphate.

Co-curricular activities and Assessment Methods:

- Continuous Evaluation: Monitoring the progress of student's learning
- Class Tests, Worksheets and Quizzes
- Presentations, Projects and Assignments and Group Discussions: Enhances critical thinking skills and personality
- SEMESTER -End Examination: critical indicator of student's learning and teaching methods adopted by teachers throughout the SEMESTER.

Reference books:

1. Vogel's Quantitative Inorganic Analysis, Seventh edition, Pearson.

A.G & S.G. SIDDHARTHA DEGREE COLLEGE OF ARTS & SCIENCE

Vuyyuru-521165

NAAC reaccredited at "A" level

Autonomous -ISO 9001 – 2015 Certified

Title of the Paper: GENERAL AND INORGANIC CHEMISTRY

Semester: II

Course Code	23CHMIL121	Course Delivery Method	Class Room / Blended Mode
Credits	3	CIA Marks	30
No. of Lecture Hours / Week	3	Semester End Exam Marks	70
Total Number of Lecture Hours	60	Total Marks	100
Year of Introduction : 2023-24	Year of Offering: 2024-25	Year of Revision: 2024-25	Percentage of Revision: 100

Course Outcomes:

At the end of the course the student will be able to-

- 6. Understand the structure of atom and the arrangement of elements in the periodic table.
- 7. Understand the nature and properties of ionic compounds.
- 8. Identify the structure of a given inorganic compound.
- 9. Explain the existence of special types of compounds through weak chemical forces.
- 10. Define acids and bases and predict the nature of salts.

Syllabus

Course Details

Unit	Learning Units	Lecture Hours
	GENERAL AND INORGANIC CHEMISTRY	
I	Atomic Structure and Periodic table: Electronic configuration: Bohr theory, duel nature of electrons, Heisenberg uncertainty principle, the Schrodinger equation, significance of wave functions, normalization of wave function, radial and angular wave functions, Pauli's exclusion principle, Hund's rule, sequence of energy levels (Aufbau principle). Periodicity: periodic law and arrangement of elements in the periodic table, IUPAC nomenclature and group number, horizontal, vertical, and diagonal relationships in the periodic table. 1.3 General properties of atoms: size of atoms and ions-atomic radii, ionic radii, covalent radii; trend in ionic radii, ionization potential, electron affinity; electronegativity - Pauling, Mulliken-Jaffe, Allred-Rochow definitions; oxidation states and variable valency; isoelectronic relationship; inert-pair effect.	9h
п	Ionic bond : Properties of ionic compounds, factors favouring the formation of ionic compounds- ionization potential, electron affinity, and electronegativity. Lattice energy: definition, factors affecting lattice energy, Born-Haber cycle-enthalpy of formation of ionic compound and stability. Stability of ionic compounds in terms of ΔHf and U _O . Solubility and thermal stability of ionic compounds. Covalent character in ionic compounds-polarization and Fajan's rules; effects of polarization-solubility, melting points, and thermal stability of typical ionic compounds.	9h
ш	The Covalent Bond: Valance Bond theory-arrangement of electrons in molecules, hybridization of atomic orbitals and geometry of molecules-BeCl ₂ , BF ₃ , CH ₄ , PCl ₅ , SF ₆ – VSEPR model- effect of bonding and nonbonding electrons on the structure of molecules, effect of electronegativity, isoelectronic principle, illustration of structures by VESPR model-NH ₃ , H ₂ O, SF ₄ , ICl^{-4} , ICl^{-2} , XeF ₄ , XeF ₆ . Molecular orbital theory -LCAO method, construction of M.O. diagrams for homo- nuclear and hetero-nuclear diatomic molecules (N ₂ , O ₂ , CO and NO).	9h
IV	Metallic and Weak Bonds: The Metallic bond: metallic properties, free electron theory, Valence Bond Theory, band theory of metals. Explanation of conductors, semiconductors and insulators. Weak bonds: hydrogen bonding-intra- and intermolecular hydrogen bonding, influence on the physical properties of molecules, comparison of hydrogen bond strength and properties of hydrogen bonded N, O and F compounds; associated molecules-ethanol and acetic acid; Vanderwaals forces, ion dipole-dipole interactions.	9h
V	Acids and Bases: Theories of acids and bases: Arrhenius theory, Bronsted-Lowry theory, Lewis theory, the solvent system, Nonaqueous solvents: classification- protonic and aprotic solvents, liquid ammonia as solvent-solutions of alkali and alkaline earth metals in ammonia. Types of chemical reactions: acid-base, oxidation-reduction, calculation of oxidation number. Definition of pH, pKa, pKb. Types of salts, Salt hydrolysis. Pearson's concept, HSAB principle & its importance, bonding in Hard-Hard and Soft-Soft combinations.	9h

List of Reference Books:

- J. D. Lee, Concise Inorganic Chemistry, 5th ed., Blackwell Science, London, 1996.
 B. R. Puri, L. R. Sharma, K. C. Kalia, Principles of Inorganic Chemistry, Shoban Lal Nagin Chand and Co., 1996.
- 6. D. F. Shriver and P. W. Atkins, Inorganic Chemistry, 3rd ed., W. H. Freemanand Co, London

A.G. & S.G.SIDDHARTHA DEGREE COLLEGE OF ARTS & SCIENCE (AUTONOMOUS), VUYYURU.

SEMESTER – II PAPER-II	PAPER CODE: 23CHMIL121 ACADEMIC YEAR-2024-25
GENERAL AND INORGANIC CHEMISTRY	

Time: 3 hours Maximum Marks: 70

PART- A

Answer the following questions. Each carries FOUR marks

5 X 4 = 20 M

1. a) Describe Pauli's exclusion principle. L1-CO1

Or

b) Discuss inert-pair effect.

. L1-C01

2. a) Tell factors favouring the formation of ionic compounds. LI -CO2

Or

- b) Describe Fajan's rules. L1-CO2
- 3. a)Explain about Valance Bond theory. L2-CO3

Or

- b)Summarize Hybridization and structure of BF3, CH4 by using VBT .L2-CO3
- 4. a)Interpret free electron theory –L2-CO4

Or

- b) State ion dipole-dipole interactions.-L2-CO4
- 5. a) Explain Bronsted-Lowry theory and Lewis theory of acid and base. -L2-CO5

Or

b) Define pH, pKa, pKb with an example each. L2-CO5

PART-B

Answer ALL the questions. Each carries TEN marks

5 X 10 = 50 M

6 (a). Explain Bohr theory and duel nature of electrons. L2-CO1

Or

- (b). Explain ionic radii, covalent radii, ionization potential, electron affinity; electro negativity. L2-CO1
- 7 (a). Describe Born-Haber cycle. L1-CO2

Or

- (b). Define Lattice energy. Various factors affecting lattice energy. L1-CO2
- 8.(a). Explain VSEPR theory? Write vesper model structures of NH3, XeF4, XeF6 L1-CO3

Oi

- (b). Construct the M.O. diagrams for N2 and CO. L1-CO3
- 9.(a). Explain band theory of metals. L2-CO4

Or

(b). Explain hydrogen bonding-intra- and intermolecular hydrogen bonding. L2-CO4

10.(a).Difine Nonaqueous solvents and write the classification of Nonaqueous solvents.**L2-CO5**Or

(b). Discuss Pearson's concept and explain HSAB principle & its importance. L2-CO5

A.G.&S.G.SIDDHARTHA DEGREE COLLEGE OF ARTS & SCIENCE (AUTONOMOUS), VUYYURU.

(Accredited at "A" Grade by NAAC, Bangalore)
PRACTICAL SYLLABUS

GENERAL AND INORGANIC	PAPER CODE : 23CHMIP121
CHEMISTRY	ACADEMIC YEAR-2024-25

30 hrs (2h/w) Credits-1

Practical- I

Qualitative Analysis of Simple Salt

Qualitative inorganic analysis (Minimum of Six simple salts should be analyzed) 50

50 M

Course outcomes:

At the end of the course, the student will be able to;

- 4. Understand the basic concepts of qualitative analysis of inorganic simple salt.
- 5. Use glassware, equipment and chemicals and follow experimental procedures in the laboratory
- 6. Apply the concepts of common ion effect, solubility product and concepts related to qualitative analysis

Syllabus Analysis of SimpleSalt

50 M

Analysis of simple salt containing ONE anion and ONE cation from the following: Anions: Carbonate, Sulphate, Chloride, Bromide, Acetate, Nitrate, Borate, Phosphate.
Cations: Lead, Copper, Iron, Aluminium, Zinc, Nickel, Manganese, Calcium, Strontium, Barium, Magnesium and Ammonium.

Co-curricular activities and Assessment Methods

- 5. Continuous Evaluation: Monitoring the progress of student's learning.
- 6. Class Tests, Work sheets and Quizzes
- 7. Presentations, Projects and Assignments and Group Discussions: Enhances critical thinking skills and personality
- 8. SEMESTER-End Examination: critical indicator of student's learning and teaching methods adopted by teachers throughout the SEMESTER.

Reference books:

1. Vogel's Quanlitative Inorganic Analysis, Seventh edition, Pearson

SCHEME OF VALUATION

- 5. INTERNAL MARKS- Record-10M
- 6. EXTERNAL MAKS-40
- 7. Analysis of Simple salt -30M
- 8. Viva questions = 10 M

TOTAL = 50 M

A.G & S.G. SIDDHARTHA DEGREE COLLEGE OF ARTS & SCIENCE Vuyyuru-521165

NAAC reaccredited at "A" level

Autonomous -ISO 9001 – 2015 Certified

Title of the Paper: Physical chemistry –II (States of Matter, Phase rule &Surface Chemistry)

Semester: IV

Course Code	23CHMAL241	Course Delivery Method	Class Room / Blended Mode
Credits	3	CIA Marks	30
No. of Lecture Hours / Week	3	Semester End Exam Marks	70
Total Number of Lecture Hours	60	Total Marks	100
Year of Introduction :	Year of	Year of Revision:	Percentage of
2024-25	Offering: 2024-25	2024-25	Revision: 100

COURSE DESCRIPTION:

Physical Chemistry II, focusing on the **States of Matter**, **Phase Rule**, and **Surface Chemistry**, provides a deeper understanding of the behavior of matter at the molecular and macroscopic levels. Building on the fundamental principles of thermodynamics and kinetics, this course explores the physical characteristics and transitions of matter, the application of the Phase Rule to complex systems, and the unique properties of surfaces in various chemical processes

S.NO	COURSE OBJECTIVES
	To explore and comprehend the basic principles governing the three main states of matter
1	(solid, liquid, and gas), To introduce the Phase Rule and its application to single and
	multi-component systems in equilibrium
	To study the properties of matter in different states, including the concept of
2	intermolecular forces and the behavior of gases, liquids, and solids, To understand the
2	concept of degrees of freedom, phase diagrams, and coexistence of phases in various
	systems.
	To analyze the relationship between temperature, pressure, and volume in the context of
3	gas laws (Ideal Gas Law, Van der Waals equation, etc.) To study the phase transitions
3	(e.g., fusion, vaporization, sublimation) and the relationship between the phases (solid,
	liquid, gas) in different thermodynamic systems.

4		To gain insights into the behavior of real gases and the factors affecting their deviation
4	4	from ideal gas behavior, To apply the Phase Rule to complex systems such as binary mixtures, colligative properties, and critical phenomena.
		To interpret phase diagrams and calculate the number of independent variables for
5	5	different types of systems. To examine the structure and properties of surfaces, including
		adsorption and desorption phenomena, and the factors affecting these processes.

Course Aims and Ob

Course outcomes:

At the end of the course, the student will be able to...

CO NO	COURSE OUTCOME	BTL	РО	PSO
CO1	Remember and Explain the difference between solids liquids and gases in terms of intermolecularinteractions.	K1	PO2	PSO1
CO2	Understand and apply surface chemistry principles to practical scenarios, such as catalysis, adsorption, and colloid stability.	K1	PO2	PSO1
CO3	Apply basic concepts of two component systems	K2	PO2	PSO1
CO4	Analyze phase diagrams and calculate degrees of freedom.	K2	PO7	PSO2
CO5	Evaluate the concepts of adsorption and Apply the Phase Rule to understand the equilibria in multi-component systems.	К3	PO1	PSO2

For BTL: K1: Remember; K2: Understand; K3: Apply; K4: Analyze; K5: Evaluate; K6: Create

CO-PO MATRIX									
CO NO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
CO1		1						2	
CO2		1						2	
CO3		2						2	
CO4							2		2
CO5	2								2

Use the codes 3,2,1 for high, moderate and low correlation between co-po-pso respectively

Syllabus

Course Details

Unit	Learning Units	Lecture Hours
	Physical chemistry –II (States of Matter, Phase rule & Surface Chem	istry)
I	Unit I - Gaseous state Postulates of Kinetic theory of Gases (exclude derivation) – deduction of gas laws from kinetic gas equation-Vander Waal's equation of state. Andrew's isotherms of carbon dioxide, continuity of state. Critical phenomena. Relationship between critical constants and vander Waal's constants. Law of corresponding states. Joule- Thomson effect. Inversion temperature.	9Hrs
II	Unit II – Liquid State Physical properties of liquids; vapour pressure, surface tension and coefficient of viscosity, and their determination. Effect of addition of various solutes on surface tension and viscosity. Temperature variation of viscosity of liquids and comparison with that of gases. Qualitative discussion of structure of water. Liquid crystals, mesomorphic state. Differences between liquid crystal and solid/liquid. Classification of liquid crystals into Smectic and Nematic. Application of liquid crystals as LCD devices	9Hrs
Ш	UNIT-III - Solid state Symmetry in crystals. Law of constancy of interfacial angles. The law of rationality of indices. Miller indices, Definition of lattice point, space lattice, unit cell. Bravais lattices and crystal systems. X-ray diffraction and crystal structure. Bragg's law and its derivation. Powder method. Defects in crystals. Stoichiometric and non-stoichiometric defects.	9Hrs
IV	Unit IV - Phase Rule The Concept of phase, components, degrees of freedom. Gibbs phase rule. Phase diagram of one component system – water system, Study of Phase diagrams of Simple eutectic systems i) Pb-Ag system, desilverisation of lead ii) NaCl-Water system, Congruent and incongruent melting point- Definition and examples for systems having congruent and incongruent melting point, freezing mixtures	9Hrs
V	Unit V Surface Chemistry Definition and classification of Colloids- Coagulation of colloids- Hardy- Schulze rule.Stability of colloids, Protection of Colloids, Gold number. Adsorption -Physical and chemical adsorption, Freundlich and Langmuir adsorptionisotherm, applications of adsorption.	9Hrs

I. List of Reference Books:

- 1) Solid State Chemistry and its applications by Anthony R. West
- 2) Text book of physical chemistry by K L Kapoor Vol.1
- 3) Text book of physical chemistry by S Glasstone
- 4) Advanced physical chemistry by Bahl and Tul

Web links:

https://chem.libretexts.org/Bookshelves/Physical and Theoretical Chemistry Textbook Maps/DeVoes The rmodynamics and Chemistry/02%3A Systems and Their Properties/2.02%3A Phases and Physica I States of Matter

http://www.gcekjr.ac.in/pdf/lectures/2020/6606-_2nd%20Semester_ALL.pdf

https://www.studiestoday.com/worksheets/447/chemistry.html

https://www.mlsu.ac.in/econtents/1210 surfacechemistrytutornotes-190628091806.pdf

https://www.nios.ac.in/media/documents/SrSec313NEW/313 Chemistry Eng/313 Chemistry Eng Lesson6.

A.G & S.G. SIDDHARTHA DEGREE COLLEGE OF ARTS & SCIENCE Vuyyuru-521165

NAAC reaccredited at "A" level

Autonomous -ISO 9001 - 2015 Certified

Title of the Paper: Physical chemistry –II (States of Matter, Phase rule &Surface Chemistry)

Semester: IV

INTERNAL ASSESMENT QUESTION PAPER

SET No	1	
Course Code : Title of the Course:	23CHMAL241 PHYSICAL CHEMISTRY –II (States of Matter, Phase Rule & Surface Chemistry	
Offered to:	BSc Hons Chemistry	
Category:	SEMESTER 3	
Max. Marks for IA	30	
Max.Time	90 Min	

Section A: Short Answer Questions (10 Marks)

Ansv	ver all questions. Each question carries 5 Marks.		
Q1	(a) Describe Joule- Thomson effect.		K1
	OR		
	(b) Discuss Vander Waal's equation of state		K1
Q2	(a) Explain Differences between liquid crystal and solid/liquid.		K2
	OR		
	(b) Describe Physical properties of liquids.	K2	

Section B: Long Answer Questions (20 Marks) Answer All questions. Each question carries 10 Marks.

Q3	(a) Illustrate Andrew's isotherms of carbon dioxide	К3
	OR	
	(b) Give Relationship between critical constants and vander Waal's constants.	К3
Q4	(a) Classify liquid crystals. And give its applications	К3
	OR	
	(b) Explain Effect of addition of various solutes on surface tension and viscosity	K3

A.G & S.G. SIDDHARTHA DEGREE COLLEGE OF ARTS & SCIENCE Vuyyuru-521165

NAAC reaccredited at "A" level

Autonomous -ISO 9001 - 2015 Certified

Title of the Paper: Physical chemistry –II (States of Matter, Phase rule &Surface Chemistry)

Semester: IV

SEMESTER -END QUESTION PAPER

Course Code & Title of the Course:	23CHMAL241 PHYSICAL CHEMISTRY –II States of Matter, Phase Rule & Surface Chemistry
Offered to:	BSc Hons Chemistry
Category:	SEMESTER: III
Max. Marks	70
Max.Time	3 Hrs

Section A: Short Answer Questions (20 Marks) Answer all questions. Each question carries 4 Marks.

Q1	(a) Discuss Vander Waal's equation of state.	K1
	OR	
	(b) Describe Joule- Thomson effect.	K1
Q2	(a) Explain Differences between liquid crystal and solid/liquid OR	K1
	(b) Describe Physical properties of liquids.	K 1
Q3	(a) Describe Law of constancy of interfacial angles OR	К2
	(b) Explain Stoichiometric and non-stoichiometric defects	K2
Q4	(a) Explain phase, components, degrees of freedom. OR	K2
	(b) Explain the Gibbs phase rule	K2
Q5	(a) Illustrate Physical and chemical adsorption OR	КЗ
	(b) Give the definition and classification of Colloids	К3

Section B: Long Answer Questions (50 Marks) Answer all questions. Each question carries 10 Marks.

\mathbf{A}	nswer all questions. Each question carries 10 Marks.	
Q6	(a) Describe Andrew's isotherms of carbon dioxide	K1
	OR	
	(b) Discuss Relationship between critical constants and vander Waal's constants	s. K1
Q7	(a) Classify liquid crystals. And give its applications	
	OR	
	(b) Explain Effect of addition of various solutes on surface tension and viscosity	K2
Q8	(a) Interpret X-ray diffraction and crystal structure. Bragg's law and its derivation	on K3
	(b) Give note on law of rationality of indices. Miller indices, Definition of lattice	poin
		К3
Q9	(a) Draw and discuss Phase diagrams of Pb-Ag system, desilverisation of lead OR	К3
	(b) Draw and discuss Phase diagrams of NaCl-Water system,	K3
Q10	(a) Interpret Coagulation of colloids- Hardy-Schulze rule and Gold number. OR	К3
	(b) Explain Freundlich and Langmuir adsorptionisotherm	К3

A.G & S.G. SIDDHARTHA DEGREE COLLEGE OF ARTS & SCIENCE Vuyyuru-521165

NAAC reaccredited at "A" level

Autonomous -ISO 9001 – 2015 Certified

Title of the Paper: Physical chemistry –II (States of Matter, Phase rule &Surface Chemistry)

Semester: IV

Course Code				23CHMAP241					
Title of the Course				PHYSICAL CHEMISTRY –II					
Offered t	Offered to: (Programme/s)			B.Sc. Hons Chemistry					
L	0	T	0	P	2	С	1		
Year of I	Year of Introduction: 2024-25			Semester: IV				IV	
Course Category: MAJOR			Course Relates to: GLOBAL						
Year of F	Revision:	2	024	Percentage: NA					
Type of the Course:			Employability,skill						
Crosscutting Issues of the Course :				Environment and Sustainability					
Pre-requisites, if any									

COURSE DESCRIPTIONS:

This course provides an in-depth understanding of the fundamental principles of physical chemistry, with a focus on surface tension, viscosity, and adsorption. Through hands-on laboratory experiments, students will learn to measure and analyze physical properties of liquids and mixtures using modern experimental techniques. The course emphasizes the practical application of theoretical concepts, offering insights into the interplay of molecular interactions, surface phenomena, and bulk properties in real-world systems.

Course Aims and Objectives:

S.NO	COURSE OBJECTIVES
1	To familiarize students with experimental techniques for determining surface tension using drop count and drop weight methods.
2	To understand the principles of fluid viscosity and its role in various chemical and physical systems.
3	To apply theoretical principles with practical applications in industries such as detergents, pharmaceuticals, and materials science
4	To foster critical thinking by analyzing experimental outcomes and comparing them with theoretical expectations.
5	To gain a comprehensive understanding of surface and interfacial phenomena, fluid dynamics, and adsorption, as well as the skills to apply these concepts effectively in scientific and industrial contexts.

Course outcomes:

At the end of the course, the student will be able to...

CO NO	COURSE OUTCOME	BTL	PO	PSO
CO1	Use glassware, equipment and chemicals and follow experimental procedures in thelaboratory	K1	PO1	PSO1
CO2	Understand and familiar with the concepts & practical applications of Surface tension and viscosity of liquids	K1	PO2	PSO1
CO3	Apply concepts of surface chemistry in experimental procedures	K2	PO2	PSO2
CO4	Analyze and determining the surface tension of liquids through methods like drop count and drop weight techniques.	K2	PO7	PSO2
CO5	Evaluate the effect of surfactants (e.g., detergents) on surface tension using a stalagmometer.	К3	PO1	PSO2

For BTL: K1: Remember; K2: Understand; K3: Apply; K4: Analyze; K5: Evaluate; K6: Create

CO-PO MATRIX									
CO NO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
CO1	2							1	
CO2		2						1	
CO3		2							2
CO4							2		2
CO5	2								2

Use the codes 3, 2, 1 for High, Moderate and Low correlation Between CO-PO-PSO respectively

Physical Chemistry Practical Syllabus:

- 1. Determination of surface tension of liquid by drop count method
- 2. Determination of surface tension of liquid by drop weight method
- 3. Determination of surface tension of mixture (liquid + detergent) using stalagmometer.
- 4. Determination of coefficient of viscosity of an organic liquid.
- 5. Determination of composition of a glycerol in glycerol + water mixture using viscometer.
- 6. Adsorption of acetic acid on animal charcoal, verification of Freundlich isotherm.
- 7. Detrminiation of partition coefficient of iodine between carbon tetra chloride and water

Co-curricular activities and Assessment Methods:

- 1) Continuous Evaluation: Monitoring the progress of student's learning
- 2) Class Tests, Worksheets and Quizzes
- 3) Presentations, Projects and Assignments and Group Discussions: Enhances critical thinking skills and personality
- 4) SEMESTER -End Examination: critical indicator of student's learning and teachingmethods adopted by teachers throughout the SEMESTER.

List of reference books:

- 1) A Text Book of Quantitative Inorganic Analysis(3rdEdition) –A.I.Vogel
- 2) Web related references suggested by teacher.

Web Links:

- 1. https://www.sscollegejehanabad.org/study-
- $\underline{material/333238879 Properties \% 20 of \% 20 Liquid \underline{B.Sc\% 20 part \% 201\% 20 chemistry \% 20 (Hons.).pdf}$
- 2. https://davjalandhar.com/dbt/chemistry/SOP%20LabManuals/B.Sc.%20BT%20SEM%20III.pdf
- 3. https://royalsocietypublishing.org/doi/10.1098/rspa.1994.0039
- 4. https://daniellefiler.weebly.com/uploads/5/5/2/8/55282799/pchem_lab_4_aa.pdf

A.G & S.G. SIDDHARTHA DEGREE COLLEGE OF ARTS & SCIENCE Vuyyuru-521165

NAAC reaccredited at "A" level

Autonomous -ISO 9001 – 2015 Certified

Title of the Paper: GENERAL AND PHYSICAL CHEMISTRY

Course Code	23CHMAL242	Course Delivery Method	Class Room /
			Blended Mode
Credits	3	CIA Marks	30
No. of Lecture Hours / Week	3	Semester End Exam Marks	70
Total Number of Lecture Hours	60	Total Marks	100
Year of Introduction:	Year of	Year of Revision:	Percentage of
2024-25	Offering:	2024-25	Revision: 100
	2024-25		

Semester: IV

Course Description: This comprehensive course integrates several key areas of chemistry, including the three-dimensional structure of organic molecules, the role of metal ions in biological systems, the principles governing equilibria in ionic solutions, the kinetics of chemical reactions, and the mechanisms of enzyme catalysis. Students will develop a deep understanding of these important topics and their applications in fields such as biochemistry, pharmaceuticals, environmental chemistry, and industrial processes

Course Objectives:

S.NO	COURSE OBJECTIVES
1	Understanding Molecular Chirality: To introduce the concepts of chirality, optical activity, and enantiomers in organic compounds, Brønsted-Lowry and Lewis theories of acids and bases, and calculate pH, pKa, and buffer capacities in solutions ,concept of reaction rates, rate laws, and rate constants for different types of reactions.
2	Explain structural isomerism (constitutional isomers) and stereoisomerism (geometrical and optical isomers), coordination complexes in biological molecules, such as hemoglobin and myoglobin , reaction mechanisms
3	To analyze difference between diastereomers and enantiomers , and the concept of meso compounds in chiral systems, how the addition of a common ion affects the solubility and equilibrium position of a salt in solution.
4	To understand the kinetics of enzyme-substrate binding and transition states . explore how stereochemistry affects the reactivity.
5	To interpret properties, and biological activity of carbon compounds in pharmaceuticals, materials science, and biochemistry.

Course outcomes:

At the end of the course, the student will be able to...

CO NO	COURSE OUTCOME	BTL	PO	PSO
CO1	Remember and describe the stereo chemical properties of organic compounds	K1	PO2	PSO1
CO2	Understand the basic concepts of enzyme catalysis in rate determination	K1	PO2	PSO1
CO3	Apply the basic concepts to Determine the order of a chemical reaction	K2	PO7	PSO2
CO4	Analyze the biological significance of various elements present in the human body.	K2	PO7	PSO2
CO5	Evaluate the concepts of ionic equilibrium for the qualitative and quantitative analysis	К3	PO7	PSO2

For BTL: K1: Remember; K2: Understand; K3: Apply; K4: Analyze; K5: Evaluate; K6: Create

CO-PO MATRIX									
CO NO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
CO1		2						1	
CO2		2						2	
CO3							2		2
CO4							2		2
CO5							2		2

Use the codes 3,2,1 for High, Moderate and Low correlation Between CO-PO-PSO respectively

Syllabus

Course Details

Unit	Learning Units	Lecture Hours				
	GENERAL AND PHYSICAL CHEMISTRY					
I	UNIT-I Stereo chemistry of carbon compounds Molecular representations - Wedge, Fischer, Newman and Saw-Horse formulae. Optical isomerism: Optical activity- wave nature of light, plane polarised light, optical rotation and specific rotation. Chiral molecules-definition and criteria (Symmetry elements)- Definition of enantiomers and diastereomers — Explanation of optical isomerism with examples-Glyceraldehyde, Lactic acid, Alanine, Tartaric acid, 2,3-dibromopentane. D,L, R,S and E,Z- configuration with examples. Definition of Racemic mixture — Resolution of racemic mixtures (atechniques)	9Hrs				
	Unit II Bioinorganic Chemistry Metal ions present in biological systems, classification of elements					
	according to their action in biological system. Geochemical effect on the					
	distribution of metals, Na / K- pump, carbonic anhydrase and carboxy					
II	peptidase. Excess and deficiency of some trace metals. Toxicity of metal	9Hrs				
	ions (Hg, Pb, Cd and As), reasons for toxicity, Use of chelating agents in					
	medicine, Cisplatin as an anti-cancer drug. Iron and its application in bio-					
	systems, Haemoglobin-transfer of oxygen, Myoglobin-Storage and transfer					
	of iron					
	Unit III Ionic equilibrium Strong, moderate and weak electrolytes, degree of ionization, factors					
	affecting degree of ionization, ionization constant and ionic product of					
	water. Ionization of weak acids and bases, pH scale, Buffer solutions-					
III	Henderson's equation. Indicators-theories of acid – base Indicators,	9Hrs				
	selection of Indicators,					
	Common ion effect Solubility and solubility product of sparingly soluble					
	salts – applications of solubility product principle.					
	Unit IV Chemical Kinetics-I: The concept of reaction rates. Effect of temperature, pressure, catalyst and					
	other factors on reaction rates. Order and molecularity of a reaction,					
IV	Derivation of integrated rate equations for zero, first and second order	9Hrs				
	reactions (similar and different reactants). Half–life of a reaction. General					
	methods for determination of order of a reaction					
V	Unit V Chemical Kinetics-II:	9Hrs				
	-					

Concept of activation energy and its calculation from Arrhenius equation.

Theories of Reaction Rates: Collision theory and Activated Complex theory of bimolecular reactions. Comparison of the two theories (qualitative treatment only).

Enzyme catalysis- Specificity, factors affecting enzyme catalysis, Inhibitors and Lock & key model. Michaels- Menten equation- derivation, significance of Michaelis-Menten constant.

I. Reference books

- 1) Text book of physical chemistry by S Glasstone
- 2) Concise Inorganic Chemistry by J.D.Lee
- 3) Advanced physical chemistry by Gurudeep Raj
- 4) Advanced physical chemistry by Bahl and Tuli
- 5) Inorganic Chemistry by J.E.Huheey
- 6) Basic Inorganic Chemistry by Cotton and Wilkinson.

1.https://www.uou.ac.in/lecturenotes/science/MSCCH-

17/CHEMISTRY%20LN%201%20STERIOCHEMISTRY.pdf

2.https://www.deshbandhucollege.ac.in/pdf/resources/1585324665 BSc(H)-BSc-PS-LS-VI-

Bioinorganic-2.pdf

- 3.https://nios.ac.in/media/documents/SrSec313NEW/313 Chemistry Eng/313 Chemistry Eng Less on12.pdf
- 4.https://vssut.ac.in/lecture_notes/lecture1425072667.pdf
- 5.https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Physical_Chemistry_(LibreTexts)/29%3A_Chemical_Kinetics_II-_Reaction_Mechanisms

NAAC reaccredited at "A" level

Autonomous -ISO 9001 - 2015 Certified

Title of the Paper: GENERAL AND PHYSICAL CHEMISTRY

Semester: IV INTERNAL ASSESMENT QUESTION PAPER

SET No	1		
Course Code : Title of the Course:	23CHMAL242 GENERAL AND PHYSICAL CHEMISTRY		
Offered to:	BSc Hons Chemistry		
Category:	SEMESTER	IV	
Max.Marks for IA	30	-	
Max.Time	90 Min		

Section A: Short Answer Questions (10 Marks)

Answer all	questions.	Each	question	carries 5	Marks.
------------	------------	------	----------	-----------	--------

Q1 (a) Define optical rotation and specific rotation.

OR

Κ1

K2

- (b) Define Definition of enantiomers and diastereomer K2
- Q2 (a) Explain Excess and deficiency of Hg, Pb and trace metals. K2

OR

(b) Describe Cisplatin as an anti-cancer drug.

Section B: Long Answer Questions (20 Marks)

Answer All questions. Each question carries 10 Marks.

Q3 (a) Illustrate optical isomerism with following molecules Glyceraldehyde, Lactic acid,
Alanine K3

OR

- (b) Draw Wedge, Fischer, Newman and Saw-Horse representations formulae with an example each.

 K3
- Q4 (a) Explain structure, Storage and transfer of oxygen of Haemoglobin K3

OR

- (b) i) Classify elements according to their actionin biological system K3
 - ii) Iron and its application in bio-system

NAAC reaccredited at "A" level

Autonomous -ISO 9001 – 2015 Certified

Title of the Paper: GENERAL AND PHYSICAL CHEMISTRY

Semester: IV

Q1

SEMESTER -END QUESTION PAPER

Course Code & Title of the Course:	23CHMAL242 GENERAL AND PHYSICAL CHEMISTRY
Offered to:	BSc Hons Chemistry
Category:	SEMESTER: IV
Max. Marks	70
Max.Time	3 Hrs

Section A: Short Answer Questions (20 Marks) Answer all questions. Each question carries 4 Marks.

Κ1

Answer all questions. Each question carries 4 Marks.

(a) Discuss Optical activity with an example

	OR	
	(b) Describe optical isomerism of Tartaric acid, 2,3-dibromopentane	K1
Q2	(a) Explain Excess and deficiency of Hg, Pb and trace metals. OR	K2
	(b) Describe Cisplatin as an anti-cancer drug.	K2
Q3	(a) Interpret Henderson's equation OR	КЗ
	(b) Illustrate ionization constant and ionic product of water	К3
Q4	(a) Derive integrated rate equations for zero order reaction OR	K4
	(b) Explain Effect of temperature on reaction rates	K4
Q5	(a) Explain activation energy and its calculation from Arrhenius equation OR	К4
	(b) Explain Inhibitors and Lock & key model.	K4

Section B: Long Answer Questions (50 Marks)

Answer all questions. Each question carries 10 Marks.

Q6	(a) Explan optical isomerism with following molecules Glyceraldehyde, Lactic a	cid,	
Alanine	e K2 OR		
	(b) Draw Wedge, Fischer, Newman and Saw-Horse representations formulae wie example each.	ith an K2	
Q7	(a) Explain structure, Storage and transfer of oxygen of Haemoglobin OR		K2
	(b) i) Classify elements according to their actionin biological systemii) Iron and its application in bio-systems		K2
Q8	(a) Interpret theories of acid – base Indicators OR		К3
	(b) Give note on Common ion effect Solubility and solubility product of sparing salts and its applications	ly solub	le K3
Q9	(a) Derive integrated rate equations for first and second order reaction OR		K4
	(b) Explain methods for determination of order of a reaction		K4
Q10	(a) Explain Collision theory and Activated Complex theory. OR	K4	
	(b) Derive Michaels- Menten equation its significance		K4

NAAC reaccredited at "A" level

Autonomous -ISO 9001 – 2015 Certified

Title of the Paper: Physical Chemistry - Volumetric Analysis

Course Code			23CHMAP242				
Title of the Course			Physical Chemistry - Volumetric Analysis				
Offered to: (Programme/s)			B.Sc. H	ons Chemistry	7		
L 0	T	0	P	2	C	1	
Year of Introduction:	2024-2	25	Semester:		IV		
Course Category:	MA	AJOR	Course	Relates to:	GLO	BAL	
Year of Revision:		2024	Percent	tage:	NA		
Type of the Course:			Employability				
Crosscutting Issues of the Course :		Environment and Sustainability					
Pre-requisites, if any			Basic knowledge on volumetric analysis				

Semester: IV

Course Description:

This course provides an introduction to the principles and techniques of volumetric analysis, focusing on titration methods for determining substance concentrations. Topics include solution preparation, standardization, indicator selection, endpoint detection, and practical applications in environmental, industrial, and pharmaceutical analysis. Emphasis is placed on precision, accuracy, and analytical skills. Suitable for students in chemistry and related fields.

Course Objectives:

S.NO	COURSE OBJECTIVES
1	Recall the basic principles of volumetric analysis and the types of titrations (e.g., acid-base, redox).List common indicators and their purposes in detecting endpoints.
2	Explain the processes of preparing and standardizing solutions. Describe the significance of stoichiometric relationships in volumetric analysis.
3	Perform accurate titrations using laboratory glassware and record observations. Apply volumetric methods to determine the concentration of unknown solutions.
4	Differentiate between various types of titrations based on their chemical principles. Analyze the factors affecting endpoint detection and titration accuracy.
5	Design a volumetric analysis experiment to address a specific analytical problem. Develop innovative approaches to improve the efficiency and reliability of titration techniques.

Course outcomes:

At the end of the course, the student will be able to...

CO NO	COURSE OUTCOME	BTL	PO	PSO
CO1	Use glassware, equipment and chemicals and follow experimental procedures in the laboratory	K 1	PO2	PSO1
CO2	Understand and explain the volumetric analysis based on fundamental concepts learnt in ionic equilibria	K1	PO2	PSO1
CO3	Apply concepts of a standard solutions, primary and secondary standards in volumetric analysis	K2	PO1	PSO1
CO4	Facilitate the learner to make solutions of various molar concentrations for analyze and estimate the unknown sample	K2	PO7	PSO2
CO5	Evaluate volumetric analysis based on fundamental concepts to determine unknown sample .	К3	PO1	PSO2

For BTL: K1: Remember; K2: Understand; K3: Apply; K4: Analyze; K5: Evaluate; K6: Create

	CO-PO MATRIX								
CO NO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
CO1		1						1	
CO2		2						2	
CO3	2							2	
CO4							2		2
CO5	2								3

Use the codes 3,2,1 for High, Moderate and Low correlation Between CO-PO-PSO respectively

Syllabus

Volumetric analysis:

- 1. Estimation of sodium hydroxide using standardised HCl solution.
- 2. Estimation of sodium carbonate and sodium hydroxide present in a mixture.
- 3. Determination of Fe (II) using KMnO4 with oxalic acid as primary standard. (internal indicator method)
- 4. Determination of Fe (II) using KmnO4 with oxalic acid as primary standard. (external indicator method)
- 5. Estimation of of Mg+2 by EDTA (complexometric titration)
- 6. Determination of first order rate constant by hydrolysis of Ester

III. Co-curricular activities and assessment methods:

- 1. Continuous Evaluation: Monitoring the progress of student's learning
- 2. Class Tests, Worksheets and Quizzes
- Presentations, Projects and Assignments and Group Discussions: Enhances critical thinking skills and personality
- **4.** SEMESTER -End Examination: critical indicator of student's learning andteaching methods adopted by teachers throughout the SEMESTER .

II. List of reference books:

- 1. A Text Book of Quantitative Inorganic Analysis(3rdEdition) –A.I.Vogel
- **2.** Web related references suggested by teacher.

Web Links:

- 1. https://www.bdu.ac.in/cde/SLM/B.Sc.% 20 Chemistry/I% 20 Year/Major% 20 Paper% 20 II% 20 Practica 1% 20-% 20 IW 20 Volumetric% 20 Analysis.indd.pdf
- 2. https://allbachelor.com/2021/01/27/1-to-estimate-the-amount-of-naoh-and-na2co3-in-the-given-mixture-of-naoh-and-na2co3/
- 3. https://www.nsec.ac.in/images/bes_REDOX%20TITRATION.pdf
- 4. https://kahedu.edu.in/naac/C-3/Additional%20documents/E-content/426.pdf

NAAC reaccredited at "A" level

Autonomous -ISO 9001 – 2015 Certified

Title of the Paper: Nitrogen containing Organic Compounds & Spectroscopy

Course Code	23CHMAL243	Course Delivery Method	Class Room / Blended Mode
Credits	3	CIA Marks	30
No. of Lecture Hours / Week	3	Semester End Exam Marks	70
Total Number of Lecture Hours	60	Total Marks	100
Year of Introduction:	Year of	Year of Revision:	Percentage of
2024-25	Offering:	2024-25	Revision: 100
	2024-25		

Semester: IV

Course Description: This course provides an in-depth study of **nitrogen-containing organic compounds** and the various **spectroscopic techniques** used to analyze organic molecules. Students will explore the synthesis, reactivity, and applications of nitrogen-containing compounds in organic chemistry, along with a detailed understanding of **spectroscopic methods** used for structure elucidation and analysis. The course aims to develop practical and theoretical skills in analyzing organic molecules and their behavior through spectroscopy.

Course Aims and Objectives:

S.NO	COURSE OBJECTIVES
1	Learn about the different classes of nitrogen-containing compounds, including amines, amides, nitriles, azides, and heterocycles. Learn how to interpret and apply common spectroscopic techniques (e.g., IR, UV) for the identification and analysis of nitrogen-containing organic compounds.
2	Recognize the structural and electronic properties of nitrogen atoms in organic compounds. Study the reactivity, synthesis, and functionalization of nitrogen-containing organic molecules.
3	Understand the key reaction mechanisms specific to nitrogen-containing organic compounds. Study electrophilic aromatic substitution and its variations in nitrogen-containing heterocycles.
4	Analyze the role of nitrogen in nucleophilic substitution, elimination reactions, and other key organic transformations.
5	Gain proficiency in distinguishing functional groups based on their spectral data. Encourage the application of theoretical knowledge to practical problems, including synthesis and structure elucidation.

Course outcomes:

At the end of the course, the student will be able to...

CO NO	OURSE OUTCOME	BTL	РО	PSO
CO1	Remember and distinguish primary secondary and tertiary amines and their properties.	K1	PO2	PSO1
CO2	Understand the methods of preparation and properties of amino acids.	K1	PO2	PSO1
CO3	Apply the reactivity of nitro hydrocarbons including mechanisms such as Nef reaction and Mannich reaction leading to Micheal addition and reductions.	К3	PO2	PSO1
CO4	Analyse properties and applications of Heterocyclic compounds with N, O and S containing 5-membered ring.	K2	PO7	PSO2
CO5	Evaluate the concepts of UV and IR to ascertain the functional group in an organic compound	К3	PO6	PSO2

For BTL: K1: Remember; K2: Understand; K3: Apply; K4: Analyze; K5: Evaluate; K6: Create

	CO-PO MATRIX								
CO NO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
CO1		1						2	
CO2		2						2	
CO3		2						2	
CO4							2		2
CO5						2			3

Use the codes 3,2,1 for High, Moderate and Low correlation Between CO-PO-PSO respectively

Syllabus

Course Details

Unit	Learning Units	Lecture Hours
	Nitrogen containing Organic Compounds & Spectroscopy	
I	Unit I Amines: Classification, chirality in amines (pyramidal inversion), Basicity of amines: Effect of substituent, solvent and steric effects. preparations – Gabriel synthesis, Hoffmann- Bromamide reaction (with mechanism), reduction of amides and Schmidt reaction. Distinction between Primary, secondary and tertiary amines using Hinsberg's method and nitrous acid. Discussion of the following reactions with emphasis on the mechanistic pathway: Carbylamine reaction, Hoffmann's exhaustive methylation, Hoffmann and Cope elimination. Diazonium Salts: Preparation and synthetic applications of diazonium salts including preparation of arenes, haloarenes, phenols, cyano and nitro	9Hrs
II	Compounds. Coupling reactions of diazonium salts (preparation of azo dyes) UNIT- II Amino acids Definition and classification of Amino acids into alpha, beta, and gamma amino acids. Natural and essential amino acids - definition and examples, classification of alpha amino acids into acidic, basic and neutral amino acids with examples. Methods of synthesis: specific examples - Glycine, Alanine, valine and leucine a) from halogenated carboxylic acid, b) Gabriel Phthalimide synthesis c) Strecker's synthesis. Physical properties: Zwitter ion structure - salt like character - solubility, melting points, amphoteric character, definition of isoelectric point. Chemical properties: General reactions due to amino and carboxyl groups - lactams from gamma and delta amino acids by heating- peptide bond (amide linkage). Structure and nomenclature of peptides and proteins.	9Hrs
III	UNIT- III Nitro hydrocarbons Nomenclature and classification, structure -Tautomerism of nitroalkanes leading to acid and keto form, Preparation of Nitroalkanes, reactivity - halogenation, reaction with HONO (Nitrous acid), Nef reaction and Mannich reaction leading to Micheal addition and reduction.	9Hrs
IV		9Hrs

	Unit IV Heterocyclic Compounds Introduction and definition: Simple five membered ring compounds with	
	one hetero atom Ex. Furan, Thiophene and Pyrrole - Aromatic character -	
	Preparation from 1, 4, -dicarbonyl compounds, Paul-Knorr synthesis.	
	Properties: Acidic character of pyrrole - electrophillic substitution at 2 or 5	
	position, Halogenation, Nitration and Sulphonation - Diels Alder reaction	
	in furan. Pyridine - synthesis - Aromaticity -Basicity - Comparison with	
	pyrrole- one method of preparation and properties - Reactivity towards	
	Nucleophilic substitution reaction.	
	UnitV UV-Visible & IR Spectroscopy Selection rules for electronic spectra, types of electronic transitions in	
	molecules, concept of chromophore and auxochrome, effect of conjugation-	
	Woodward Fischer rules for calculating	
V	λ_{max} of conjugated dienes and α,β unsaturated compounds. Infrared	9Hrs
	spectroscopy and types of molecular vibrations and fingerprint region. IR	
	spectra of alkanes, alkenes and simple alcohols (inter and intra molecular	
	hydrogen bonding), aldehydes, ketones, carboxylic acids.	

I. List of Reference Books

- 1) A Text Book of Organic Chemistry by Bahl and Arunbahl
- 2) A Text Book of Organic chemistry by I L FinarVol I
- 3) Organic chemistry by Bruice
- 4) Organic chemistry by Clayden
- 5) Spectroscopy by William Kemp
- 6) Spectroscopy by Pavia
- 7) Organic Spectroscopy by J. R. Dyer
- 8) Elementary organic spectroscopy by Y.R. Sharma
- 9) Spectroscopy by P.S.Kalsi
- 10) Spectrometric Identification of Organic Compounds by Robert MSilverstein, Francis X

Web Links:

- 1. https://www.britannica.com/science/amine/Occurrence-and-sources-of-amines
- 2. https://www.britannica.com/science/amino-acid
- 3.https://www.lkouniv.ac.in/site/writereaddata/siteContent/202003291608409347arun_sethi_Nitro_c ompounds.pdf
- 4.https://www2.chemistry.msu.edu/faculty/reusch/virttxtjml/heterocy.htm
- 5. https://www.eag.com/techniques/spectroscopy/uv-vis-spectroscopy/

NAAC reaccredited at "A" level

Autonomous -ISO 9001 – 2015 Certified

Title of the Paper: Nitrogen containing Organic Compounds & Spectroscopy

Semester: INTERNAL ASSESMENT QUESTION PAPER

SET No	1
Course Code : Title of the Course:	23CHMAL243 Nitrogen containing Organic Compounds & Spectroscopy
Offered to:	BSc Hons Chemistry
Category:	SEMESTER 3
Max.Marks for IA	30
Max.Time	90 Min

Section A: Short Answer Questions (10 Marks)

Answer all questions. Each question carries 5 Marks.

Q1 (a) Describe Hinsberg's method **for** distinction of amines K1

OR

(b) Discuss Hofmann and Cope elimination.

Κ1

Q2 (a) Explain isoelectric point and Zwitter ion structure of amino acids K2

OR

(b) Describe Structure and nomenclature of proteins.

Κ2

Section B: Long Answer Questions (20 Marks)

Answer All questions. Each question carries 10 Marks.

Q3 (a) Describe any three methods for preparations of amines

K2

OR

- (b) Discuss preparation diazonium salts from haloarenes, phenols, and nitro compounds. K2
- Q4 (a) Use Gabriel Phthalimide synthesis and Strecker's synthesis for preparation of amino acids K3

OR

(b) Interpret classification of Amino acids and write formation of lactams from gamma and delta amino acids. K3

NAAC reaccredited at "A" level

Autonomous -ISO 9001 – 2015 Certified

Title of the Paper: Nitrogen containing Organic Compounds & Spectroscopy

Semester: IV

SEMESTER -END QUESTION PAPER

Course Code & Title of the Course:	23CHMAL243 Nitrogen containing Organic Compounds & Spectroscopy
Offered to:	BSc Hons Chemistry
Category:	SEMESTER: III
Max. Marks	70
Max.Time	3 Hrs

Section A: Short Answer Questions (20 Marks)

Answer all questions. Each question carries 4 Marks.

Q1	(a) Discuss Hofmann and Cope elimination	K1	
	OR		
	(b) Describe Hinsberg's method for distinction of amines		K1
Q2	(a) Explain isoelectric point and Zwitter ion structure of amino acids		K2
	OR		
	(b) Describe Structure and nomenclature of proteins		K2
	(b) Describe structure and nomenerature of proteins		K2
Q3	(a) Show structure and Tautomerism of nitroalkanes	КЗ	
	OR		
	(b) Interpret Micheal addition reaction .	К3	
04	(a) Explain aromatic nature of Europ and Daviding		K4
Q4	(a) Explain aromatic nature of Furan and Pyridine OR		Ν4
	ON		
	(b) Explain Acidic character of pyrrole		K4
Q5	(a) Explain chromophore and auxochrome with an example each		К3
	OR		
	(b) Contrast fingerprint region and fundamental region		К3

Section B: Long Answer Questions (50 Marks)

	Answer all questions. Each question carries 10 Marks.		
Q6	(a) Describe any three methods for preparations of amines		Κ1
	OR		
	(b) Discuss Discuss preparation diazonium salts from haloarenes, phenols, ar	nd nitro	
	compounds.	K1	
Q7	(a) Describe Gabriel Phthalimide synthesis and Strecker's synthesis for prepa	ration c	of
	amino acids	K2	
	OR		
	(b) Classify Amino acids and write formation of lactams from		
	gamma and delta amino acids	K2	
Q8	(a) Prepare Nitroalkanes and gives its reactions with Halogen and Nitrous acid		КЗ
	OR		
	(b) Interpret Nef reaction and Mannich reaction point		КЗ
Q 9	(a) Explain any three methods of synthesis and reactions of pyridine		K 4
	OR		
	(b) Explain any three methods of synthesis and reactions of Pyrrole		K4
Q10	(a) Order Woodward Fischer rules for calculating λ max of conjugated dienes ar	ıd α,β	
	unsaturated carbonyl compounds		K4
	OR		
	(b) Order types of molecular vibrations in IR		Κ4

NAAC reaccredited at "A" level

Autonomous -ISO 9001 - 2015 Certified

Course Code 23CHMAP243							
Title of the Course			Organic preparations and IR Spectral Analysis				
Offered to: (Programn	ne/s)		B.Sc. Hons Chemistry				
L	Т	0	P	2	C	1	
Year of Introduction: 2024-25			Semester:				IV
Course Category:	MA	AJOR	Course Relates to: GLOBAL			BAL	
Year of Revision:	2	2024	Percentage: NA				
Type of the Course:	Employability						
Crosscutting Issues of	Environment and Sustainability						
Pre-requisites, if any	23CHMAP232						

Title of the Paper: Organic preparations and IR Spectral Analysis

Semester: IV

Course Description: The course is designed to provide practical skills in laboratory preparation of organic compounds as well as the theoretical and practical understanding of how IR spectroscopy can be used to determine the structure and identity of organic molecules This course introduces students to the fundamental techniques in organic synthesis and the analysis of organic compounds using Infrared (IR) Spectroscopy.

S.NO	COURSE OBJECTIVES							
1	Understanding organic reactions, including nucleophilic substitution, electrophilic addition, elimination, and rearrangement reactions, to synthesize a variety of organic compounds							
2	Grasp the basic principles of infrared spectroscopy, including the interaction of infrared radiation with molecules and the concept of vibrational energy levels.							
3	Learn how different functional groups in organic molecules absorb infrared light at characteristic wavelengths and how these absorptions relate to molecular structure.							
4	Synthesize organic compounds in the laboratory, and then use IR spectroscopy to confirm the identity and purity of the products.							
5	Develop skills in accurately interpreting experimental data and spectral results, Develop skills in accurately interpreting experimental data and spectral results.							

Course outcomes:

At the end of the course, the student will be able to...

CO NO	COURSE OUTCOME	BTL	PO	PSO
CO1	Use glassware, equipment and chemicals and follow experimental procedures in thelaboratory	K1	PO1	PSO1
CO2	Understand concepts and Calculate limiting reagent, theoretical yield, and percent yield.	K1	PO2	PSO1
CO3	Engage in safe laboratory practices by handling laboratory glassware, equipment, and chemical reagents appropriately	K2	PO2	PSO1
CO4	Dispose of chemicals in a safe and responsible manner	K2	PO6	PSO2
CO5	Perform common laboratory techniques including reflux, distillation, recrystallization, vacuum filtration	К3	PO6	PSO2

For BTL: K1: Remember; K2: Understand; K3: Apply; K4: Analyze; K5: Evaluate; K6: Create

CO-PO MATRIX									
CO NO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
CO1	1							1	
CO2		2						2	
CO3		2						2	
CO4						2			3
CO5						3			2

Use the codes 3,2,1 for High, Moderate and Low correlation Between CO-PO-PSO respectively

Syllabus

A. Organic preparations:

40M

- 1) Acetylation of one of the following compounds: amines (aniline, o-, m-, ptoluidinesand o-, m-, p-anisidine)
- a. Using conventional method.
- b. Using green approach
- 2) Benzoylation of one of the following amines (aniline, o-, m-, p- toluidines and o-, m-,p- anisidine)
- 3) Nitration of any one of the following: Acetanilide/nitrobenzene by conventional method

B. IR Spectral Analysis

10M

IR Spectral Analysis of the following functional groups with examples a) Hydroxyl groups b) Carbonyl groups c) Amino groups d) Aromatic groups

Co-curricular activities and assessment methods:

- 1. Continuous Evaluation: Monitoring the progress of student's learning
- 2. Class Tests, Worksheets and Quizzes
- Presentations, Projects and Assignments and Group Discussions: Enhances critical thinking skills and personality
- 4. SEMESTER -End Examination: critical indicator of student's learning andteaching methods adopted by teachers throughout the SEMESTER.

List of reference books:

- 1. Vogel A.I. Practical Organic Chemistry, Longman Group Ltd.
- 2. Bansal R.K. Laboratory Manual of Organic Chemistry, Wiley-Eastern.
- 3. Ahluwalia V. K. and Agarwal R. Comprehensive Practical Organic Chemistry, University press.

Web related references suggested by teacher.

1.https://chem.libretexts.org/Ancillary_Materials/Laboratory_Experiments/Wet_Lab_Experiments/Organic_Chemistry_Labs/The_Synthesis_and_Characterization_of_Carbonyl_Compounds/1%3A_Acetylation_of_Aniline_(Experiment)

- 2. https://dnrcollege.org/2024/eContent/CHE/3M.pdf
- 3 https://egyankosh.ac.in/bitstream/123456789/13205/1/Experiment-11.pdf
- 4. https://ncert.nic.in/pdf/publication/sciencelaboratorymanuals/classXII/chemistry/lelm110.pdf

NAAC reaccredited at "A" level

Autonomous -ISO 9001 - 2015 Certified

Title of the Paper: Physical chemistry–II (States of Matter, Phase rule & Surface Chemistry)

Semester: IV

Course Code	23CHMIL241	Course Delivery Method	Class Room / Blended Mode
Credits	3	CIA Marks	30
No. of Lecture Hours / Week	3	Semester End Exam Marks	70
Total Number of Lecture Hours	60	Total Marks	100
Year of Introduction: 2024-25	Year of Offering: 2024-25	Year of Revision: 2024-25	Percentage of Revision: 100

COURSE DESCRIPTION:

Physical Chemistry II, focusing on the **States of Matter**, **Phase Rule**, and **Surface Chemistry**, provides a deeper understanding of the behavior of matter at the molecular and macroscopic levels. Building on the fundamental principles of thermodynamics and kinetics, this course explores the physical characteristics and transitions of matter, the application of the Phase Rule to complex systems, and the unique properties of surfaces in various chemical processes

Course Aims and Ob

S.NO	COURSE OBJECTIVES
1	To explore and comprehend the basic principles governing the three main states of matter (solid, liquid, and gas), To introduce the Phase Rule and its application to single and
	multi-component systems in equilibrium
	To study the properties of matter in different states, including the concept of
2	intermolecular forces and the behavior of gases, liquids, and solids, To understand the
_	concept of degrees of freedom, phase diagrams, and coexistence of phases in various
	systems.
	To analyze the relationship between temperature, pressure, and volume in the context of
3	gas laws (Ideal Gas Law, Van der Waals equation, etc.) To study the phase transitions
3	(e.g., fusion, vaporization, sublimation) and the relationship between the phases (solid,
	liquid, gas) in different thermodynamic systems.
	To gain insights into the behavior of real gases and the factors affecting their deviation
4	from ideal gas behavior, To apply the Phase Rule to complex systems such as binary
	mixtures, colligative properties, and critical phenomena.
	To interpret phase diagrams and calculate the number of independent variables for
5	different types of systems. To examine the structure and properties of surfaces, including
	adsorption and desorption phenomena, and the factors affecting these processes.

Course outcomes:

At the end of the course, the student will be able to...

CO NO	COURSE OUTCOME	BTL	PO	PSO
CO1	Remember and Explain the difference between solids liquids and gases in terms of intermolecularinteractions.	K1	PO2	PSO1
CO2	Understand and apply surface chemistry principles to practical scenarios, such as catalysis, adsorption, and colloid stability.	K1	PO2	PSO1
CO3	Apply basic concepts of two component systems	K2	PO2	PSO1
CO4	Analyze phase diagrams and calculate degrees of freedom.	K2	PO7	PSO2
CO5	Evaluate the concepts of adsorption and Apply the Phase Rule to understand the equilibria in multi-component systems.	К3	PO1	PSO2

For BTL: K1: Remember; K2: Understand; K3: Apply; K4: Analyze; K5: Evaluate; K6: Create

	CO-PO MATRIX								
CO NO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
CO1		1						2	
CO2		1						2	
CO3		2						2	
CO4							2		2
CO5	2								2

Use the codes 3,2,1 for high, moderate and low correlation between co-po-pso respectively

Syllabus

Course Details

Unit	Learning Units	Lecture Hours
	Physical chemistry –II (States of Matter, Phase rule &Surface Che	mistry)
I	Unit I - Gaseous state Postulates of Kinetic theory of Gases (exclude derivation) – deduction of gas laws from kinetic gas equation-Vander Waal's equation of state. Andrew's isotherms of carbon dioxide, continuity of state. Critical phenomena. Relationship between critical constants and vander Waal's constants. Law of corresponding states. Joule- Thomson effect. Inversion temperature.	9Hrs
II	Unit II – Liquid State Physical properties of liquids; vapour pressure, surface tension and coefficient of viscosity, and their determination. Effect of addition of various solutes on surface tension and viscosity. Temperature variation of viscosity of liquids and comparison with that of gases. Qualitative discussion of structure of water. Liquid crystals, mesomorphic state. Differences between liquid crystal and solid/liquid. Classification of liquid crystals into Smectic and Nematic. Application of liquid crystals as LCD devices UNIT-III - Solid state	9Hrs
III	Symmetry in crystals. Law of constancy of interfacial angles. The law of rationality of indices. Miller indices, Definition of lattice point, space lattice, unit cell. Bravais lattices and crystal systems. X-ray diffraction and crystal structure. Bragg's law and its derivation. Powder method. Defects in crystals. Stoichiometric and non-stoichiometric defects.	9Hrs
IV	Unit IV - Phase Rule The Concept of phase, components, degrees of freedom. Gibbs phase rule. Phase diagram of one component system – water system, Study of Phase diagrams of Simple eutectic systems i) Pb-Ag system, desilverisation of lead ii) NaCl-Water system, Congruent and incongruent melting point- Definition and examples for systems having congruent and incongruent melting point, freezing mixtures	9Hrs
V	Unit V Surface Chemistry Definition and classification of Colloids- Coagulation of colloids- Hardy- Schulze rule. Stability of colloids, Protection of Colloids, Gold number. Adsorption -Physical and chemical adsorption, Freundlich and Langmuir adsorptionisotherm, applications of adsorption.	9Hrs

II. List of Reference Books:

- 1. Solid State Chemistry and its applications by Anthony R. West
- 2.Text book of physical chemistry by K L Kapoor Vol.1
- 3.Text book of physical chemistry by S Glasstone
- 4. Advanced physical chemistry by Bahl and Tul

Web links:

http://www.gcekjr.ac.in/pdf/lectures/2020/6606-_2nd%20Semester_ALL.pdf

https://www.studiestoday.com/worksheets/447/chemistry.html

https://www.mlsu.ac.in/econtents/1210 surfacechemistrytutornotes-190628091806.pdf

https://www.nios.ac.in/media/documents/SrSec313NEW/313 Chemistry Eng/313 Chemistry Eng Lesson6.

NAAC reaccredited at "A" level

Autonomous -ISO 9001 - 2015 Certified

Title of the Paper: Physical chemistry –II (States of Matter, Phase rule &Surface Chemistry)

Semester: IV

INTERNAL ASSESMENT QUESTION PAPER

SET No	1			
Course Code : Title of the Course:	II	PHYSICAL CHEMISTRY – II (States of Matter, Phase Rule &		
Offered to: BSc Hons Chemistry				
Category:	SEMESTER	3		
Max.Marks for IA	30	30		
Max.Time 90 Min				

Section A: Short Answer Questions (10 Marks)

Ansv	wer all questions. Each question carries 5 Marks.	,	
Q1	(a) Describe Joule- Thomson effect.		K1
	OR		
	(b) Discuss Vander Waal's equation of state		K1
Q2	(a) Explain Differences between liquid crystal and solid/li	quid.	K2
	OR		
	(b) Describe Physical properties of liquids.	K2	

Section B: Long Answer Questions (20 Marks)

Answer All questions. Each question carries 10 Marks.

Q3	(a) Illustrate Andrew's isotherms of carbon dioxide			
	OR			
	(b) Give Relationship between critical constants and vander Waal's constants.	К3		
Q4	(a) Classify liquid crystals. And give its applications	К3		
	OR			
	(b) Explain Effect of addition of various solutes on surface tension and viscosit	у КЗ		

NAAC reaccredited at "A" level

Autonomous -ISO 9001 - 2015 Certified

Title of the Paper: Physical chemistry -II (States of Matter, Phase rule & Surface Chemistry)

Semester: IV

SEMESTER -END QUESTION PAPER

Course Code & Title of the Course:	23CHMIL241 PHYSICAL CHEMISTRY –II States of Matter, Phase Rule & Surface Chemistry
Offered to:	BSc Hons Chemistry
Category:	SEMESTER: III
Max. Marks	70
Max.Time	3 Hrs

Section A: Short Answer Questions (20 Marks) Answer all questions. Each question carries 4 Marks.

Q1	(a) Discuss Vander Waal's equation of state.	K1
	OR	
	(b) Describe Joule- Thomson effect.	K1
Q2	(a) Explain Differences between liquid crystal and solid/liquid OR	K1
	(b) Describe Physical properties of liquids.	K 1
Q3	(a) Describe Law of constancy of interfacial angles OR	К2
	(b) Explain Stoichiometric and non-stoichiometric defects	K2
Q4	(a) Explain phase, components, degrees of freedom. OR	K2
	(b) Explain the Gibbs phase rule	K2
Q5	(a) Illustrate Physical and chemical adsorption OR	КЗ
	(b) Give the definition and classification of Colloids	К3

Section B: Long Answer Questions (50 Marks) Answer all questions. Each question carries 10 Marks.

Ar	nswer all questions. Each question carries 10 Marks.	
Q6	(a) Describe Andrew's isotherms of carbon dioxide	K1
	OR	
	(b) Discuss Relationship between critical constants and vander Waal's constants	. K1
Q7	(a) Classify liquid crystals. And give its applications	
	OR	
	(b) Explain Effect of addition of various solutes on surface tension and viscosity	K2
Q8	 (a) Interpret X-ray diffraction and crystal structure. Bragg's law and its derivation OR (b) Give note on law of rationality of indices. Miller indices, Definition of lattice 	
	(b) Give note on law of rationality of indices, while indices, Definition of lattice	politi
		K3
Q9	(a) Draw and discuss Phase diagrams of Pb-Ag system, desilverisation of lead OR	K3
	(b) Draw and discuss Phase diagrams of NaCl-Water system,	K3
Q10	(a) Interpret Coagulation of colloids- Hardy-Schulze rule and Gold number. OR	К3
	(b) Explain Freundlich and Langmuir adsorptionisotherm	К3

NAAC reaccredited at "A" level

Autonomous -ISO 9001 – 2015 Certified

Title of the Paper: Physical chemistry –II (States of Matter, Phase rule &Surface Chemistry)

Semester: IV

Course Code				23CHMIP241				
Title of the Course				PHYSICAL CHEMISTRY –II				
Offered to: (Programme/s)			B.Sc. Hons Chemistry					
L	0	Т	0	P	2	C 1		
Year of Introduction: 2024-25			Semester: IV			IV		
Course Category: M		Mi	nor	Course Relates to:		GLOBAL		
Year of Revision: 2024		Percentage: NA						
Type of the Course:				Employability,skill				
Crosscutting Issues of the Course :				Environment and Sustainability				
Pre-requisites, if any								

COURSE DESCRIPTIONS:

This course provides an in-depth understanding of the fundamental principles of physical chemistry, with a focus on surface tension, viscosity, and adsorption. Through hands-on laboratory experiments, students will learn to measure and analyze physical properties of liquids and mixtures using modern experimental techniques. The course emphasizes the practical application of theoretical concepts, offering insights into the interplay of molecular interactions, surface phenomena, and bulk properties in real-world systems.

Course Aims and Objectives:

S.NO	COURSE OBJECTIVES
1	To familiarize students with experimental techniques for determining surface tension using drop count and drop weight methods.
2	To understand the principles of fluid viscosity and its role in various chemical and physical systems.
3	To apply theoretical principles with practical applications in industries such as detergents, pharmaceuticals, and materials science
4	To foster critical thinking by analyzing experimental outcomes and comparing them with theoretical expectations.
5	To gain a comprehensive understanding of surface and interfacial phenomena, fluid dynamics, and adsorption, as well as the skills to apply these concepts effectively in scientific and industrial contexts.

Course outcomes:

At the end of the course, the student will be able to...

CO NO	COURSE OUTCOME	BTL	PO	PSO
CO1	Use glassware, equipment and chemicals and follow experimental procedures in thelaboratory	K1	PO1	PSO1
CO2	Understand and familiar with the concepts & practical applications of Surface tension and viscosity of liquids	K1	PO2	PSO1
CO3	Apply concepts of surface chemistry in experimental procedures	K2	PO2	PSO2
CO4	Analyze and determining the surface tension of liquids through methods like drop count and drop weight techniques.	K2	PO7	PSO2
CO5	Evaluate the effect of surfactants (e.g., detergents) on surface tension using a stalagmometer.	К3	PO1	PSO2

For BTL: K1: Remember; K2: Understand; K3: Apply; K4: Analyze; K5: Evaluate; K6: Create

	CO-PO MATRIX										
CO NO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2		
CO1	2							1			
CO2		2						1			
CO3		2							2		
CO4							2		2		
CO5	2								2		

Use the codes 3, 2, 1 for High, Moderate and Low correlation Between CO-PO-PSO respectively

Physical Chemistry Practical Syllabus:

- 1.Determination of surface tension of liquid by drop count method
- 2. Determination of surface tension of liquid by drop weight method
- 3. Determination of surface tension of mixture (liquid + detergent) using stalagmometer.
- 4. Determination of coefficient of viscosity of an organic liquid.
 - 5. Determination of composition of a glycerol in glycerol + water mixture using viscometer.
 - 6. Adsorption of acetic acid on animal charcoal, verification of Freundlich isotherm.
- 7. Detrminiation of partition coefficient of iodine between carbon tetra chloride and water

Co-curricular activities and Assessment Methods:

- Continuous Evaluation: Monitoring the progress of student's learning
- Class Tests, Worksheets and Quizzes
- Presentations, Projects and Assignments and Group Discussions: Enhances
- critical thinking skills and personality
- SEMESTER -End Examination: critical indicator of student's learning and teachingmethods adopted by teachers throughout the SEMESTER.

List of reference books:

- A Text Book of Quantitative Inorganic Analysis(3rdEdition) –A.I.Vogel
- Web related references suggested by teacher.

Web Links:

- 1. https://www.sscollegejehanabad.org/study-
- material/333238879Properties%20of%20Liquid_B.Sc%20part%201%20chemistry%20(Hons.).pdf
- 2. https://davjalandhar.com/dbt/chemistry/SOP%20LabManuals/B.Sc.%20BT%20SEM%20III.pdf
- 3. https://royalsocietypublishing.org/doi/10.1098/rspa.1994.0039
- 4. https://daniellefiler.weebly.com/uploads/5/5/2/8/55282799/pchem_lab_4_aa.pdf

NAAC reaccredited at "A" level

Autonomous -ISO 9001 – 2015 Certified

Title of the Paper: GENERAL AND PHYSICAL CHEMISTRY

Course Code	23CHMIL242	Course Delivery Method	Class Room / Blended Mode
Credits	3	CIA Marks	30
No. of Lecture Hours / Week	3	Semester End Exam Marks	70
Total Number of Lecture Hours	60	Total Marks	100
Year of Introduction :	Year of	Year of Revision:	Percentage of
2024-25	Offering:	2024-25	Revision: 100
	2024-25		

Semester: IV

Course Description: This comprehensive course integrates several key areas of chemistry, including the three-dimensional structure of organic molecules, the role of metal ions in biological systems, the principles governing equilibria in ionic solutions, the kinetics of chemical reactions, and the mechanisms of enzyme catalysis. Students will develop a deep understanding of these important topics and their applications in fields such as biochemistry, pharmaceuticals, environmental chemistry, and industrial processes

Course Objectives:

S.NO	COURSE OBJECTIVES
1	Understanding Molecular Chirality: To introduce the concepts of chirality, optical activity, and enantiomers in organic compounds, Brønsted-Lowry and Lewis theories of acids and bases, and calculate pH, pKa, and buffer capacities in solutions ,concept of reaction rates, rate laws, and rate constants for different types of reactions.
2	Explain structural isomerism (constitutional isomers) and stereoisomerism (geometrical and optical isomers), coordination complexes in biological molecules, such as hemoglobin and myoglobin , reaction mechanisms
3	To analyze difference between diastereomers and enantiomers , and the concept of meso compounds in chiral systems, how the addition of a common ion affects the solubility and equilibrium position of a salt in solution.
4	To understand the kinetics of enzyme-substrate binding and transition states . explore how stereochemistry affects the reactivity.
5	To interpret properties, and biological activity of carbon compounds in pharmaceuticals, materials science, and biochemistry.

Course outcomes:

At the end of the course, the student will be able to...

CO NO	COURSE OUTCOME	BTL	PO	PSO
CO1	Remember and describe the stereo chemical properties of organic compounds	K1	PO2	PSO1
CO2	Understand the basic concepts of enzyme catalysis in rate determination	K1	PO2	PSO1
CO3	Apply the basic concepts to Determine the order of a chemical reaction	K2	PO7	PSO2
CO4	Analyze the biological significance of various elements present in the human body.	K2	PO7	PSO2
CO5	Evaluate the concepts of ionic equilibrium for the qualitative and quantitative analysis	К3	PO7	PSO2

For BTL: K1: Remember; K2: Understand; K3: Apply; K4: Analyze; K5: Evaluate; K6: Create

	CO-PO MATRIX										
CO NO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2		
CO1		2						1			
CO2		2						2			
CO3							2		2		
CO4							2		2		
CO5							2		2		

Use the codes 3,2,1 for High, Moderate and Low correlation Between CO-PO-PSO respectively

Syllabus

Course Details

Unit	Learning Units	Lecture Hours
	GENERAL AND PHYSICAL CHEMISTRY	
I	UNIT-I Stereo chemistry of carbon compounds Molecular representations - Wedge, Fischer, Newman and Saw-Horse formulae. Optical isomerism: Optical activity- wave nature of light, plane polarised light, optical rotation and specific rotation. Chiral molecules-definition and criteria (Symmetry elements)- Definition of enantiomers and diastereomers — Explanation of optical isomerism with examples-Glyceraldehyde, Lactic acid, Alanine, Tartaric acid, 2,3-dibromopentane. D,L, R,S and E,Z- configuration with examples.	9Hrs
	Definition of Racemic mixture – Resolution of racemic mixtures (techniques)	
	Unit II Bioinorganic Chemistry	
	Metal ions present in biological systems, classification of elements	
	according to their action in biological system. Geochemical effect on the	
	distribution of metals, Na / K- pump, carbonic anhydrase and carboxy	
II	peptidase. Excess and deficiency of some trace metals. Toxicity of metal	9Hrs
	ions (Hg, Pb, Cd and As), reasons for toxicity, Use of chelating agents in	
	medicine, Cisplatin as an anti-cancer drug. Iron and its application in bio-	
	systems, Haemoglobin-transfer of oxygen, Myoglobin-Storage and transfer of iron	
	Unit III Ionic equilibrium	
	Strong, moderate and weak electrolytes, degree of ionization, factors	
	affecting degree of ionization, ionization constant and ionic product of	
	water. Ionization of weak acids and bases, pH scale, Buffer solutions-	
III	Henderson's equation. Indicators-theories of acid – base Indicators,	9Hrs
	selection of Indicators,	
	Common ion effect Solubility and solubility product of sparingly soluble	
	salts – applications of solubility product principle.	
	Unit IV Chemical Kinetics-I: The concept of reaction rates. Effect of temperature, pressure, catalyst and	
	other factors on reaction rates. Order and molecularity of a reaction,	
IV	Derivation of integrated rate equations for zero, first and second order	9Hrs
	reactions (similar and different reactants). Half-life of a reaction. General	
	methods for determination of order of a reaction	
	Unit V Chemical Kinetics-II:	9Hrs
V		>

Concept of activation energy and its calculation from Arrhenius equation. Theories of Reaction Rates: Collision theory and Activated Complex theory of bimolecular reactions. Comparison of the two theories (qualitative treatment only).

Enzyme catalysis- Specificity, factors affecting enzyme catalysis, Inhibitors and Lock & key model. Michaels- Menten equation- derivation, significance of Michaelis-Menten constant.

III. Reference books

- Text book of physical chemistry by S Glasstone
- Concise Inorganic Chemistry by J.D.Lee
- Advanced physical chemistry by Gurudeep Raj
- Advanced physical chemistry by Bahl and Tuli
- Inorganic Chemistry by J.E.Huheey
- Basic Inorganic Chemistry by Cotton and Wilkinson.

1.https://www.uou.ac.in/lecturenotes/science/MSCCH-

17/CHEMISTRY%20LN%201%20STERIOCHEMISTRY.pdf

- 2.https://www.deshbandhucollege.ac.in/pdf/resources/1585324665_BSc(H)-BSc-PS-LS-VI-Bioinorganic-2.pdf
- 3.https://nios.ac.in/media/documents/SrSec313NEW/313_Chemistry_Eng/313_Chemistry_Eng_Less on12.pdf
- 4.https://vssut.ac.in/lecture_notes/lecture1425072667.pdf
- 5.https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Physical_Chemistry_(LibreTexts)/29%3A_Chemical_Kinetics_II-_Reaction_Mechanisms

NAAC reaccredited at "A" level

Autonomous -ISO 9001 - 2015 Certified

Title of the Paper: GENERAL AND PHYSICAL CHEMISTRY

Semester: IV INTERNAL ASSESMENT QUESTION PAPER

SET No	1
Course Code : Title of the Course:	23CHMIL242 GENERAL AND PHYSICAL CHEMISTRY
Offered to:	BSc Hons Chemistry
Category:	SEMESTER IV
Max.Marks for IA	30
Max.Time	90 Min

Section A: Short Answer Questions (10 Marks)

Answer all questions. Each question carries 5 Marks.

Q1 (a) Define optical rotation and specific rotation.

Κ1

OR

(b) Define Definition of enantiomers and diastereomer

K2

Q2 (a) Explain Excess and deficiency of Hg, Pb and trace metals.

K2

OR

(b) Describe Cisplatin as an anti-cancer drug.

K2

К3

Section B: Long Answer Questions (20 Marks)

Answer All questions. Each question carries 10 Marks.

Q3 (a) Illustrate optical isomerism with following molecules Glyceraldehyde, Lactic acid,
Alanine K3

OR

- (b) Draw Wedge, Fischer, Newman and Saw-Horse representations formulae with an example each.
- Q4 (a) Explain structure, Storage and transfer of oxygen of Haemoglobin K3

OR

- (b) i) Classify elements according to their actionin biological system
 - ii) Iron and its application in bio-system

NAAC reaccredited at "A" level

Autonomous -ISO 9001 – 2015 Certified

Title of the Paper: GENERAL AND PHYSICAL CHEMISTRY

Semester: IV

Q1

SEMESTER -END QUESTION PAPER

Course Code & Title of the Course:	23CHMIL242 GENERAL AND PHYSICAL CHEMISTRY					
Offered to:	BSc Hons Chemistry					
Category:	SEMESTER: IV					
Max. Marks	70					
Max.Time	3 Hrs					

Section A: Short Answer Questions (20 Marks) Answer all questions. Each question carries 4 Marks.

Κ1

Answer all questions. Each question carries 4 Marks.

(a) Discuss Optical activity with an example

	OR	
	(b) Describe optical isomerism of Tartaric acid, 2,3-dibromopentane	K1
Q2	(a) Explain Excess and deficiency of Hg, Pb and trace metals. OR	K2
	(b) Describe Cisplatin as an anti-cancer drug.	К2
Q3	(a) Interpret Henderson's equation OR	К3
	(b) Illustrate ionization constant and ionic product of water	К3
Q4	(a) Derive integrated rate equations for zero order reaction OR	K4
	(b) Explain Effect of temperature on reaction rates	K4
Q5	(a) Explain activation energy and its calculation from Arrhenius equation OR	K4
	(b) Explain Inhibitors and Lock & key model.	K4

Section B: Long Answer Questions (50 Marks)

Answer all questions. Each question carries 10 Marks.

	Answer an questions. Each question carries to marks.	
Q6	(a) Explan optical isomerism with following molecules Glyceraldehyde, Lactic aci	d,
Alanine	е К2	
	OR	
	(b) Draw Wedge, Fischer, Newman and Saw-Horse representations formulae with	n an
	example each.	K2
Q7	(a) Explain structure, Storage and transfer of oxygen of Haemoglobin OR	K2
	(b) i) Classify elements according to their actionin biological system ii) Iron and its application in bio-systems	К2
Q8	(a) Interpret theories of acid – base Indicators OR	К3
	(b) Give note on Common ion effect Solubility and solubility product of sparingly salts and its applications	r soluble K3
Q9	(a) Derive integrated rate equations for first and second order reaction OR	K4
	(b) Explain methods for determination of order of a reaction	K4
Q10	OR	K4
	(b) Derive Michaels- Menten equation its significance	K4

NAAC reaccredited at "A" level

Autonomous -ISO 9001 – 2015 Certified

Title of the Paper: Physical Chemistry - Volumetric Analysis

Course Code	23CHMIP242						
Title of the Course			Physical Chemistry - Volumetric Ana				alysis
Offered to: (Programme/s)			B.Sc. H	ons Chemistry	,		
L 0	T	0	P	2	C	1	
Year of Introduction: 2024-25			Semester:			IV	
Course Category:	Miı	nor	Course Relates to: GLOBAL				
Year of Revision:	<u> </u>	2024	Percentage: NA				
Type of the Course:			Employability				
Crosscutting Issues of the Course:			Environment and Sustainability				
Pre-requisites, if any			Basic knowledge on volumetric analysis				

Semester: IV

Course Description:

This course provides an introduction to the principles and techniques of volumetric analysis, focusing on titration methods for determining substance concentrations. Topics include solution preparation, standardization, indicator selection, endpoint detection, and practical applications in environmental, industrial, and pharmaceutical analysis. Emphasis is placed on precision, accuracy, and analytical skills. Suitable for students in chemistry and related fields.

Course Objectives:

	Dijectives.						
S.NO	COURSE OBJECTIVES						
1	Recall the basic principles of volumetric analysis and the types of titrations (e.g., acid-base, redox).List common indicators and their purposes in detecting endpoints.						
2	Explain the processes of preparing and standardizing solutions. Describe the significance of stoichiometric relationships in volumetric analysis.						
3	Perform accurate titrations using laboratory glassware and record observations. Apply volumetric methods to determine the concentration of unknown solutions.						
4	Differentiate between various types of titrations based on their chemical principles. Analyze the factors affecting endpoint detection and titration accuracy.						
5	Design a volumetric analysis experiment to address a specific analytical problem. Develop innovative approaches to improve the efficiency and reliability of titration techniques.						

Course outcomes:

At the end of the course, the student will be able to...

CO NO	COURSE OUTCOME	BTL	PO	PSO
CO1	Use glassware, equipment and chemicals and follow experimental procedures in the laboratory	K 1	PO2	PSO1
CO2	Understand and explain the volumetric analysis based on fundamental concepts learnt in ionic equilibria	K1	PO2	PSO1
CO3	Apply concepts of a standard solutions, primary and secondary standards in volumetric analysis	K2	PO1	PSO1
CO4	Facilitate the learner to make solutions of various molar concentrations for analyze and estimate the unknown sample	K2	PO7	PSO2
CO5	Evaluate volumetric analysis based on fundamental concepts to determine unknown sample .	К3	PO1	PSO2

For BTL: K1: Remember; K2: Understand; K3: Apply; K4: Analyze; K5: Evaluate; K6: Create

CO-PO MATRIX												
CO NO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2			
CO1		1						1				
CO2		2						2				
CO3	2							2				
CO4							2		2			
CO5	2								3			

Use the codes 3,2,1 for High, Moderate and Low correlation Between CO-PO-PSO respectively

Syllabus

Volumetric analysis:

- 1. Estimation of sodium hydroxide using standardised HCl solution.
- 2. Estimation of sodium carbonate and sodium hydroxide present in a mixture.
- 3.Determination of Fe (II) using KMnO4 with oxalic acid as primary standard. (internal indicator method)
- 4.Determination of Fe (II) using KmnO4 with oxalic acid as primary standard. (external indicator method)
- 5.Estimation of of Mg+2 by EDTA (complexometric titration)
- 6.Determination of first order rate constant by hydrolysis of Ester

III. Co-curricular activities and assessment methods:

- 1. Continuous Evaluation: Monitoring the progress of student's learning
- 2. Class Tests, Worksheets and Quizzes
- Presentations, Projects and Assignments and Group Discussions: Enhances critical thinking skills and personality
- **4.** SEMESTER -End Examination: critical indicator of student's learning andteaching methods adopted by teachers throughout the SEMESTER .

IV. List of reference books:

- 1. A Text Book of Quantitative Inorganic Analysis(3rdEdition) –A.I.Vogel
- **2.** Web related references suggested by teacher.

Web Links:

- 1.https://www.bdu.ac.in/cde/SLM/B.Sc.%20Chemistry/I%20Year/Major%20Paper%20II%20Practica 1%20-%20I%20Volumetric%20Analysis.indd.pdf
- $2. \ \underline{https://allbachelor.com/2021/01/27/1-to-estimate-the-amount-of-naoh-and-na2co3-in-the-given-mixture-of-naoh-and-na2co3/}$
- 3. https://www.nsec.ac.in/images/bes_REDOX%20TITRATION.pdf
- 4. https://kahedu.edu.in/naac/C-3/Additional%20documents/E-content/426.pdf

A.G. & S.G. Siddhartha Degree College of Arts & Science

Vuyyuru-521165, Krishna District, Andhra Pradesh
(Managed by: Siddhartha Academy of General & Technical Education, Vijayawada-10)
An Autonomous College in the Jurisdiction of Krishna University
Accredited by NAAC with "A" Grade

DEPARTMENT OF Chemistry

Value Added Course

Title: "WATER ANALYSIS"

Name of the Lecturer :

Class : II Major Chemistry

Duration of the Course : Thirty Days

VAC Code :

WATER ANALYSIS"

Syllabus

- INTRODUCTION
- WATER QUALITY PARAMETERS
- BIO CHEMICAL OXYGEN DEMAND (BOD), CHEMICAL OXYGEN DEMAND (COD)& DISSOLVED OXYGEN
- INORGANIC MEASUREMENTS
- ELECTRIC CONDUCTANCE
- HARDNESS CLASSIFICATION OF WATER
- PHYSICAL PARAMETERS
- CHEMICAL PARAMETERS
- ANALISIS OF TURBIDIMETRY
- CATION MEASUREMENTS
- ANION MEASUREMENTS
- INSTRUMENTATION
- RESULT

Methodology:

Teaching ,Learning & Practical Methods

Duration: 30 Days